Question

In: Physics

The solution of the Schrödinger's Equation for the quantum-mechanical harmonic oscillator includes the Hermite polynomials in...

The solution of the Schrödinger's Equation for the quantum-mechanical harmonic oscillator includes the Hermite polynomials in the wavefunctions. (In the following questions be sure to define all symbols.) Please make sure your writing is legible

(a) Write the differential equation for which the Hermite polynomials are the solution.

(b) State the recursion relation for the Hermite polynomials and be sure to define all symbols.

(c) Write the mathematical expression for the orthogonality of the Hermite polynomials and be sure to define all symbols.

(d) Calculate the normalization constant for the harmonic oscillator wavefunctions by using the orthogonality of the Hermite polynomials.

Solutions

Expert Solution


Related Solutions

Solve the quantum harmonic oscillator problem by using the matrix method.
Solve the quantum harmonic oscillator problem by using the matrix method.
Explain why in the case of the quantum harmonic oscillator the wave function can cross the...
Explain why in the case of the quantum harmonic oscillator the wave function can cross the potential barrier and why does the same not happen in the case of the infinite potential well? Explain in detail
What is the difference between Quantum Mechanical and Newtonian Mechanical harmonic oscialltor. Please give example and...
What is the difference between Quantum Mechanical and Newtonian Mechanical harmonic oscialltor. Please give example and describe in terms of energy.
QUANTUM MECHANICS-upper level In the harmonic oscillator problem, the normalized wave functions for the ground and...
QUANTUM MECHANICS-upper level In the harmonic oscillator problem, the normalized wave functions for the ground and first excited states are ψ0 and ψ1. Using these functions, at some point t, a wave function u = Aψ0 + Bψ1 is constructed, where A and B are real numbers. (a) Show that the average value of x in the u state is generally non-zero. (b) What condition A and B must satisfy if we want the function u to be normalized? (c)...
Quantum Mechanics Determine the settlement approach (approximation) for the harmonic oscillator system due to the relativistic...
Quantum Mechanics Determine the settlement approach (approximation) for the harmonic oscillator system due to the relativistic term using the perturbation method in order 2 correction.
1. A 0.25 kg harmonic oscillator has a total mechanical energy of 4.1J. If the oscillation...
1. A 0.25 kg harmonic oscillator has a total mechanical energy of 4.1J. If the oscillation amplitude is 20.0cm. what is the oscillation frequency? 2. A 0.250-kg stone is attached to an ideal spring and undergoes simple harmonic oscillations with a period of 0.640 s. What is the force constant (spring constant) of the spring? 3. An object of mass m = 8.0 kg is attached to an ideal spring and allowed to hang in the earth's gravitational field. The...
Solve the quantum simple harmonic oscillator in three dimensions i.e. find the energy and eigenkets. It's...
Solve the quantum simple harmonic oscillator in three dimensions i.e. find the energy and eigenkets. It's solution will include hermite polynomials.
The motion of an harmonic oscillator is governed by the differential equation 2¨x + 3 ˙x...
The motion of an harmonic oscillator is governed by the differential equation 2¨x + 3 ˙x + 4x = g(t). i. Suppose the oscillator is unforced and the motion is started from rest with an initial displacement of 5 positive units from the equilibrium position. Will the oscillator pass through the equilibrium position multiple times? Justify your answer. ii. Now suppose the oscillator experiences a forcing function 2e t for the first two seconds, after which it is removed. Later,...
1) a) Establish schrodinger equation,for a linear harmonic oscillator and solve it to obtain its eigen...
1) a) Establish schrodinger equation,for a linear harmonic oscillator and solve it to obtain its eigen values and eigen functions. b) calculate the probability of finding a simple harmonic oscillator within the classical limits if the oscillator in its normal state.
Solve schroedinger's equation for a three dimensional harmonic oscillator and obtain its eigen values and eigen...
Solve schroedinger's equation for a three dimensional harmonic oscillator and obtain its eigen values and eigen functions.Are the energy levels degenerate? Explain what is the minimum uncertainty in its location in the lowest state.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT