Question

In: Physics

Solve the quantum harmonic oscillator problem by using the matrix method.

Solve the quantum harmonic oscillator problem by using the matrix method.

Solutions

Expert Solution


Related Solutions

Solve the quantum simple harmonic oscillator in three dimensions i.e. find the energy and eigenkets. It's...
Solve the quantum simple harmonic oscillator in three dimensions i.e. find the energy and eigenkets. It's solution will include hermite polynomials.
QUANTUM MECHANICS-upper level In the harmonic oscillator problem, the normalized wave functions for the ground and...
QUANTUM MECHANICS-upper level In the harmonic oscillator problem, the normalized wave functions for the ground and first excited states are ψ0 and ψ1. Using these functions, at some point t, a wave function u = Aψ0 + Bψ1 is constructed, where A and B are real numbers. (a) Show that the average value of x in the u state is generally non-zero. (b) What condition A and B must satisfy if we want the function u to be normalized? (c)...
The solution of the Schrödinger's Equation for the quantum-mechanical harmonic oscillator includes the Hermite polynomials in...
The solution of the Schrödinger's Equation for the quantum-mechanical harmonic oscillator includes the Hermite polynomials in the wavefunctions. (In the following questions be sure to define all symbols.) Please make sure your writing is legible (a) Write the differential equation for which the Hermite polynomials are the solution. (b) State the recursion relation for the Hermite polynomials and be sure to define all symbols. (c) Write the mathematical expression for the orthogonality of the Hermite polynomials and be sure to...
Explain why in the case of the quantum harmonic oscillator the wave function can cross the...
Explain why in the case of the quantum harmonic oscillator the wave function can cross the potential barrier and why does the same not happen in the case of the infinite potential well? Explain in detail
Quantum Mechanics Determine the settlement approach (approximation) for the harmonic oscillator system due to the relativistic...
Quantum Mechanics Determine the settlement approach (approximation) for the harmonic oscillator system due to the relativistic term using the perturbation method in order 2 correction.
Method A: Based on the frequency of a simple harmonic oscillator. The angular frequency of a...
Method A: Based on the frequency of a simple harmonic oscillator. The angular frequency of a mass on a spring is given by ω=(k/m)1/2ω=(k/m)1/2 where m is the mass and k is the spring constant. The period of a harmonic oscillator is T=2π/ωT=2π/ω . If you do a little math, you can get a formula for the spring constant in terms of the mass and the period. a) Design a procedure to measure the spring constant based on Method A...
1) a) Establish schrodinger equation,for a linear harmonic oscillator and solve it to obtain its eigen...
1) a) Establish schrodinger equation,for a linear harmonic oscillator and solve it to obtain its eigen values and eigen functions. b) calculate the probability of finding a simple harmonic oscillator within the classical limits if the oscillator in its normal state.
In the harmonic oscillator problem, the normalized wave functions for the ground and first excited states...
In the harmonic oscillator problem, the normalized wave functions for the ground and first excited states are ψ0 and ψ1. Using these functions, at some point t, a wave function u = Aψ0 + Bψ1 is constructed, where A and B are real numbers. (a) Show that the average value of x in the u state is generally non-zero. (b) What condition A and B must satisfy if we want the function u to be normalized? (c) For which values...
Solve schroedinger's equation for a three dimensional harmonic oscillator and obtain its eigen values and eigen...
Solve schroedinger's equation for a three dimensional harmonic oscillator and obtain its eigen values and eigen functions.Are the energy levels degenerate? Explain what is the minimum uncertainty in its location in the lowest state.
1) What is ? for a harmonic oscillator (in terms of the period)?
  1) What is ? for a harmonic oscillator (in terms of the period)? 2) What is ? for a spring? A) If you increase the amplitude, what happens to the period? B) If you increase the mass, what happens to the period? C) If you increase the spring constant, what happens to the period? 3) What is ? for a simple pendulum? A) If you increase the amplitude, what happens to the period? B) If you increase the mass,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT