Question

In: Physics

A meterstick (L = 1 m) has a mass of m = 0.19 kg. Initially it...

A meterstick (L = 1 m) has a mass of m = 0.19 kg. Initially it hangs from two short strings: one at the 25 cm mark and one at the 75 cm mark.

What is the tension in the left string right after the right string is cut?

Solutions

Expert Solution

Given that :

length of the meterstick, L = 1 m

mass of meterstick, m = 0.19 kg

using an equation, we have

Fext = m aCM

mg - T1 = m aCM

T1 = m (g - aCM)                                                                     { eq.1 }

we know that, = I

(mg) d = I (aCM / d)

aCM = mg d2 / I                                                                    { eq.2 }

where, I = moment of inertia of meterstick = ICM + m L2

I = (1/12) m L2 + m L2 (1/12) (0.19 kg) (1 m)2 + (0.19 kg) (1 m)2

I = (0.0158 kg.m2) + (0.19 kg.m2)

I = 0.2058 kg.m2

inserting the values in eq.2,

aCM = (0.19 kg) (9.8 m/s2) (0.25 m)2 / (0.2058 kg.m2)

aCM = 0.565 m/s2

Now, using eq.1 -

T1 = (0.19 kg) [(9.8 m/s2) - (0.565 m/s2)]

T1 = (0.19 kg) (9.23 m/s2)

T1 = 1.75 N


Related Solutions

A meterstick (L = 1 m) has a mass of m = 0.168 kg. Initially it...
A meterstick (L = 1 m) has a mass of m = 0.168 kg. Initially it hangs from two short strings: one at the 25 cm mark and one at the 75 cm mark. 1) What is the tension in the left string? 2) Now the right string is cut! What is the initial angular acceleration of the meterstick about its pivot point? (You may assume the rod pivots about the left string, and the string remains vertical) 3) What...
A bullet of mass m=11 gr is fired into a block of mass M=1 kg initially...
A bullet of mass m=11 gr is fired into a block of mass M=1 kg initially at rest at the edge of a frictionless table of height h=1.10 m. The bullet remains in the block and the block lands a distance d=0.67 m from the bottom of the table. a)Determine the initial velocity of the bullet. b) Determine the loss of kinetic Energy during the collision.
A bullet of mass m=12 gr is fired into a block of mass M=1 kg initially...
A bullet of mass m=12 gr is fired into a block of mass M=1 kg initially at rest at the edge of a frictionless table of height h=1.00 m. The bullet remains in the block and the block lands a distance d=0.60 m from the bottom of the table. a)Determine the initial velocity of the bullet. vi= m/s b) Determine the loss of kinetic energy during the collision. ΔK = J
A bullet of mass m=14 gr is fired into a block of mass M=1 kg initially...
A bullet of mass m=14 gr is fired into a block of mass M=1 kg initially at rest at the edge of a frictionless table of height h=1.10 m. The bullet remains in the block and the block lands a distance d=0.65 m from the bottom of the table. Determine the initial velocity of the bullet. Determine the loss of kinetic Energy during the collision
A uniform disk of mass 371 kg and radius 0.19 m is mounted on frictionless bearings...
A uniform disk of mass 371 kg and radius 0.19 m is mounted on frictionless bearings so it can rotate freely around a vertical axis through its center (see the following figure). A cord is wrapped around the rim of the disk and pulled with a force of 10 N. What is the angular velocity (in rad/s) at the instant the disk has completed four revolutions. The disk starts from rest. Group of answer choices 3.78 rad/s 3.87 rad/s 2.35...
A block has mass M=2kg and is initially at rest, then slides a distance L =...
A block has mass M=2kg and is initially at rest, then slides a distance L = 1.25m down a theta = 30degrees frictionless incline plane until it is momentarily brought to rest by a spring. The spring is compressed a distance X= 3cm . a) Write down expressions for the initial and final energy of the system b) Find an expression for the spring constant K in terms of L, X, theta and M and calculate K c)The experiment is...
A bullet of mass m=20 gr is fired into a block of mass M=5 kg initially...
A bullet of mass m=20 gr is fired into a block of mass M=5 kg initially at rest at the edge of a frictionless table of height h=0.90 m. The bullet remains in the block and the block lands a distance d=0.68 m from the bottom of the table. Picture1 a)Determine the initial velocity of the bullet. vi= m/s b) Determine the loss of kinetic Energy during the collision. ΔK = J.
A particle of mass 0.350 kg is attached to the 100-cm mark of a meterstick of...
A particle of mass 0.350 kg is attached to the 100-cm mark of a meterstick of mass 0.150 kg. The meterstick rotates on the surface of a frictionless, horizontal table with an angular speed of 6.00 rad/s. (a) Calculate the angular momentum of the system when the stick is pivoted about an axis perpendicular to the table through the 50.0-cm mark. (b) Calculate the angular momentum of the system when the stick is pivoted about an axis perpendicular to the...
1) A ladder whose length L is 12 m and mass m are 45 kg rests...
1) A ladder whose length L is 12 m and mass m are 45 kg rests against a wall. Its upper end is a distance h of 9.3 m above the ground. The center of mass of the ladder is one-third of the way up the ladder. A fire fighter whose mass M is 72 kg climbs the ladder until his center of mass is halfway up. Assume the wall but not the ground is frictionless. What forces are exerted...
As shown in the figure below, a box of mass m = 68.0 kg (initially at...
As shown in the figure below, a box of mass m = 68.0 kg (initially at rest) is pushed a distance d = 91.0 m across a rough warehouse floor by an applied force of FA = 226 N directed at an angle of 30.0° below the horizontal. The coefficient of kinetic friction between the floor and the box is 0.100. Determine the following. (For parts (a) through (d), give your answer to the nearest multiple of 10.) (d) work...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT