Question

In: Advanced Math

The linear transformation is such that for any v in R2, T(v) = Av. a) Use...

The linear transformation is such that for any v in R2, T(v) = Av.

a) Use this relation to find the image of the vectors v1 = [-3,2]T and v2 = [2,3]T. For the following transformations take k = 0.5 first then k = 3,

T1(x,y) = (kx,y)

T2(x,y) = (x,ky)

T3(x,y) = (x+ky,y)

T4(x,y) = (x,kx+y)

For T5 take theta = (pi/4) and then theta = (pi/2)

T5(x,y) = (cos(theta)x - sin(theta)y, sin(theta)x + cos(theta)y)

b) Plot v1 and v2 and their images under the transformations. Write a short description saying what the transformations is doing to the vectors.

Solutions

Expert Solution


Related Solutions

Let T : R2 → R3 be a linear transformation such that T( e⃗1 ) =...
Let T : R2 → R3 be a linear transformation such that T( e⃗1 ) = (2,3,-5) and T( e⃗2 ) = (-1,0,1). Determine the standard matrix of T. Calculate T( ⃗u ), the image of ⃗u=(4,2) under T. Suppose T(v⃗)=(3,2,2) for a certain v⃗ in R2 .Calculate the image of ⃗w=2⃗u−v⃗ . 4. Find a vector v⃗ inR2 that is mapped to ⃗0 in R3.
Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1...
Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1 + 2x2 , 2x1 + 4x2) a. Find the standard matrix of T. b. Find the ker(T) and nullity (T). c. Is T one-to-one? Explain.
For problems 1-4 the linear transformation T/; R^n - R^m  is defined by T(v)=AV with A=[-1 -2...
For problems 1-4 the linear transformation T/; R^n - R^m  is defined by T(v)=AV with A=[-1 -2 -1 -1 2 1 0 -4 4 6 1 15] 1.   Find the dimensions of R^n and R^m (3 pts) 2.   Find T(<-2, 1, 4, -1>) (5 pts) 3.   Find the preimage of <-6, 12, 4> (8 pts) 4.   Find the Ker(T) (8 pts)
(a) Find a linear transformation T : R2→R2 that (i) maps the x1-axis to itself, (ii)...
(a) Find a linear transformation T : R2→R2 that (i) maps the x1-axis to itself, (ii) maps the x2-axis to itself, and (iii) maps no other line through the origin to itself. For example, the negating function (n: R2→R2 defined by n(x) =−x) satisfies (i) and (ii), but not (iii). (b) The function that maps (x1, x2) to the perimeter of a rectangle with side lengths x1 and x2 is not a linear function. Why? For part (b) I can't...
Consider a transformation T : R2×2 → R2×2 such that T(M) = MT . This is...
Consider a transformation T : R2×2 → R2×2 such that T(M) = MT . This is infact a linear transformation. Based on this, justify if the following statements are true or not. (2) a) T ◦ T is the identity transformation. b) The kernel of T is the zero matrix. c) Range T = R2×2 d) T(M) =-M is impossible.
T::R2->R2, T(x1,x2) =(x-2y,2y-x). a) verify that this function is linear transformation. b)find the standard matrix for...
T::R2->R2, T(x1,x2) =(x-2y,2y-x). a) verify that this function is linear transformation. b)find the standard matrix for this linear transformation. Determine the ker(T) and the range(T). D) is this linear combo one to one? how about onto? what else could we possibly call it?
A linear transformation from R3-R4 with the V set of vectors x, where T(x)=0, is V...
A linear transformation from R3-R4 with the V set of vectors x, where T(x)=0, is V a subspace of R3?
Prove the following T is linear in the following definitions (a) T : R3 →R2 is...
Prove the following T is linear in the following definitions (a) T : R3 →R2 is defined by T(x,y,z) = (x−y,2z) (b) T : R2 →R3 is defined by T(x,y) = (x−y,0,2x+y) (c) T : P2(R) → P3(R) is defined by T(f(x)) = xf(x)+f(x)
Find the rank and the nullity of the linear transformation: T : P2 → P1, T(?...
Find the rank and the nullity of the linear transformation: T : P2 → P1, T(? + ?? + ??^2) = (? + ?) + (? − ?)x
Consider the linear transformation T: R2x2 -> R2x2 defined by T(A) = AT - A. Determine...
Consider the linear transformation T: R2x2 -> R2x2 defined by T(A) = AT - A. Determine the eigenvalues of this linear transformation and their algebraic and geometric multiplicities.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT