Question

In: Math

Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1...

Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1 + 2x2 , 2x1 + 4x2)

a. Find the standard matrix of T.

b. Find the ker(T) and nullity (T).

c. Is T one-to-one? Explain.

Solutions

Expert Solution


Related Solutions

Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that...
Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that T is invertible. b)Find T inverse.
Let T : R2 → R3 be a linear transformation such that T( e⃗1 ) =...
Let T : R2 → R3 be a linear transformation such that T( e⃗1 ) = (2,3,-5) and T( e⃗2 ) = (-1,0,1). Determine the standard matrix of T. Calculate T( ⃗u ), the image of ⃗u=(4,2) under T. Suppose T(v⃗)=(3,2,2) for a certain v⃗ in R2 .Calculate the image of ⃗w=2⃗u−v⃗ . 4. Find a vector v⃗ inR2 that is mapped to ⃗0 in R3.
T::R2->R2, T(x1,x2) =(x-2y,2y-x). a) verify that this function is linear transformation. b)find the standard matrix for...
T::R2->R2, T(x1,x2) =(x-2y,2y-x). a) verify that this function is linear transformation. b)find the standard matrix for this linear transformation. Determine the ker(T) and the range(T). D) is this linear combo one to one? how about onto? what else could we possibly call it?
(a) Find a linear transformation T : R2→R2 that (i) maps the x1-axis to itself, (ii)...
(a) Find a linear transformation T : R2→R2 that (i) maps the x1-axis to itself, (ii) maps the x2-axis to itself, and (iii) maps no other line through the origin to itself. For example, the negating function (n: R2→R2 defined by n(x) =−x) satisfies (i) and (ii), but not (iii). (b) The function that maps (x1, x2) to the perimeter of a rectangle with side lengths x1 and x2 is not a linear function. Why? For part (b) I can't...
Is the following map linear? a) F(x1,x2,x3)=(0,0) b) L:R2→R2 defined by L(x1,x2)=(3x1−2x2,x2) c) f:R→R defined by...
Is the following map linear? a) F(x1,x2,x3)=(0,0) b) L:R2→R2 defined by L(x1,x2)=(3x1−2x2,x2) c) f:R→R defined by f(x)=2x
1. Let ρ: R2 ×R2 →R be given by ρ((x1,y1),(x2,y2)) = |x1 −x2|+|y1 −y2|. (a) Prove...
1. Let ρ: R2 ×R2 →R be given by ρ((x1,y1),(x2,y2)) = |x1 −x2|+|y1 −y2|. (a) Prove that (R2,ρ) is a metric space. (b) In (R2,ρ), sketch the open ball with center (0,0) and radius 1. 2. Let {xn} be a sequence in a metric space (X,ρ). Prove that if xn → a and xn → b for some a,b ∈ X, then a = b. 3. (Optional) Let (C[a,b],ρ) be the metric space discussed in example 10.6 on page 344...
The linear transformation is such that for any v in R2, T(v) = Av. a) Use...
The linear transformation is such that for any v in R2, T(v) = Av. a) Use this relation to find the image of the vectors v1 = [-3,2]T and v2 = [2,3]T. For the following transformations take k = 0.5 first then k = 3, T1(x,y) = (kx,y) T2(x,y) = (x,ky) T3(x,y) = (x+ky,y) T4(x,y) = (x,kx+y) For T5 take theta = (pi/4) and then theta = (pi/2) T5(x,y) = (cos(theta)x - sin(theta)y, sin(theta)x + cos(theta)y) b) Plot v1 and...
Consider the linear transformation T: R2x2 -> R2x2 defined by T(A) = AT - A. Determine...
Consider the linear transformation T: R2x2 -> R2x2 defined by T(A) = AT - A. Determine the eigenvalues of this linear transformation and their algebraic and geometric multiplicities.
let X1, X2, X3 be random variables that are defined as X1 = θ + ε1...
let X1, X2, X3 be random variables that are defined as X1 = θ + ε1 X2 = 2θ + ε2 X3 = 3θ + ε3 ε1, ε2, ε3 are independent and the mean and variance are the following random variable E(ε1) = E(ε2) = E(ε3) = 0 Var(ε1) = 4 Var(ε2) = 6 Var(ε3) = 8 What is the Best Linear Unbiased Estimator(BLUE) when estimating parameter θ from the three samples X1, X2, X3
. Let T : R n → R m be a linear transformation and A the...
. Let T : R n → R m be a linear transformation and A the standard matrix of T. (a) Let BN = {~v1, . . . , ~vr} be a basis for ker(T) (i.e. Null(A)). We extend BN to a basis for R n and denote it by B = {~v1, . . . , ~vr, ~ur+1, . . . , ~un}. Show the set BR = {T( r~u +1), . . . , T( ~un)} is a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT