Question

In: Advanced Math

Consider a transformation T : R2×2 → R2×2 such that T(M) = MT . This is...

Consider a transformation T : R2×2 R2×2 such that T(M) = MT .
This is infact a linear transformation. Based on this, justify if the following
statements are true or not. (2)
a) T T is the identity transformation.
b) The kernel of T is the zero matrix.
c) Range T = R2×2
d) T(M) =-M is impossible.

Solutions

Expert Solution

If you have any doubts please ask me in comment...

The last stement is wrong because if we have skew symmetric matrix the possiblity happen..


Related Solutions

Q2a) Consider a transformation T : R 2×2 → R 2×2 such that T(M) = MT...
Q2a) Consider a transformation T : R 2×2 → R 2×2 such that T(M) = MT . This is infact a linear transformation. Based on this, justify if the following statements are true or not. (2) a) T ◦ T is the identity transformation. b) The kernel of T is the zero matrix. c) Range T = R 2×2 d) T(M) =-M is impossible. b) Assume that you are given a matrix A = [aij ] ∈ R n×n with...
Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1...
Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1 + 2x2 , 2x1 + 4x2) a. Find the standard matrix of T. b. Find the ker(T) and nullity (T). c. Is T one-to-one? Explain.
Let T : R2 → R3 be a linear transformation such that T( e⃗1 ) =...
Let T : R2 → R3 be a linear transformation such that T( e⃗1 ) = (2,3,-5) and T( e⃗2 ) = (-1,0,1). Determine the standard matrix of T. Calculate T( ⃗u ), the image of ⃗u=(4,2) under T. Suppose T(v⃗)=(3,2,2) for a certain v⃗ in R2 .Calculate the image of ⃗w=2⃗u−v⃗ . 4. Find a vector v⃗ inR2 that is mapped to ⃗0 in R3.
(a) Find a linear transformation T : R2→R2 that (i) maps the x1-axis to itself, (ii)...
(a) Find a linear transformation T : R2→R2 that (i) maps the x1-axis to itself, (ii) maps the x2-axis to itself, and (iii) maps no other line through the origin to itself. For example, the negating function (n: R2→R2 defined by n(x) =−x) satisfies (i) and (ii), but not (iii). (b) The function that maps (x1, x2) to the perimeter of a rectangle with side lengths x1 and x2 is not a linear function. Why? For part (b) I can't...
The linear transformation is such that for any v in R2, T(v) = Av. a) Use...
The linear transformation is such that for any v in R2, T(v) = Av. a) Use this relation to find the image of the vectors v1 = [-3,2]T and v2 = [2,3]T. For the following transformations take k = 0.5 first then k = 3, T1(x,y) = (kx,y) T2(x,y) = (x,ky) T3(x,y) = (x+ky,y) T4(x,y) = (x,kx+y) For T5 take theta = (pi/4) and then theta = (pi/2) T5(x,y) = (cos(theta)x - sin(theta)y, sin(theta)x + cos(theta)y) b) Plot v1 and...
T::R2->R2, T(x1,x2) =(x-2y,2y-x). a) verify that this function is linear transformation. b)find the standard matrix for...
T::R2->R2, T(x1,x2) =(x-2y,2y-x). a) verify that this function is linear transformation. b)find the standard matrix for this linear transformation. Determine the ker(T) and the range(T). D) is this linear combo one to one? how about onto? what else could we possibly call it?
2) Consider the Lorentz transformation that maps (x,t) into (x',t'), where t and x are both...
2) Consider the Lorentz transformation that maps (x,t) into (x',t'), where t and x are both in time units (so x is really x/c) and all speeds are in c units also. a) Show that the inverse of the Lorentz transformation at v is the same as the Lorentz transformation at -v. Why is that required? b) Show that x^2 - t^2 = x'^2 - t'^2, i.e., that x^2 - t^2 is invariant under Lorentz transformation
Consider the linear transformation T: R2x2 -> R2x2 defined by T(A) = AT - A. Determine...
Consider the linear transformation T: R2x2 -> R2x2 defined by T(A) = AT - A. Determine the eigenvalues of this linear transformation and their algebraic and geometric multiplicities.
. Let T : R n → R m be a linear transformation and A the...
. Let T : R n → R m be a linear transformation and A the standard matrix of T. (a) Let BN = {~v1, . . . , ~vr} be a basis for ker(T) (i.e. Null(A)). We extend BN to a basis for R n and denote it by B = {~v1, . . . , ~vr, ~ur+1, . . . , ~un}. Show the set BR = {T( r~u +1), . . . , T( ~un)} is a...
Please explain all the steps! Let f : R2 → R2 be the affine transformation which...
Please explain all the steps! Let f : R2 → R2 be the affine transformation which reflects about the line x = 1, then rotates 90 degrees clockwise about the origin. Write f as a matrix M, and use it to calculate f(2, 2).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT