Question

In: Advanced Math

(a) Find a linear transformation T : R2→R2 that (i) maps the x1-axis to itself, (ii)...

(a) Find a linear transformation T : R2→R2 that (i) maps the x1-axis to itself, (ii) maps the x2-axis to itself, and (iii) maps no other line through the origin to itself.

For example, the negating function (n: R2→R2 defined by n(x) =−x) satisfies (i) and (ii), but not (iii).

(b) The function that maps (x1, x2) to the perimeter of a rectangle with side lengths x1 and x2 is not a linear function. Why?

For part (b) I can't come up with any counterexamples that show T(x+y) = T(x) + T(y) or that aT(x) = T(ax) isn't true, and when I tried to use a variables instead of numbers, I ended up showing that it did satisfy both conditions. I'm not sure what I'm missing.

Solutions

Expert Solution

First we take x1 as X and x2 as Y. Then


Related Solutions

Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1...
Let T: R2 -> R2 be a linear transformation defined by T(x1 , x2) = (x1 + 2x2 , 2x1 + 4x2) a. Find the standard matrix of T. b. Find the ker(T) and nullity (T). c. Is T one-to-one? Explain.
T::R2->R2, T(x1,x2) =(x-2y,2y-x). a) verify that this function is linear transformation. b)find the standard matrix for...
T::R2->R2, T(x1,x2) =(x-2y,2y-x). a) verify that this function is linear transformation. b)find the standard matrix for this linear transformation. Determine the ker(T) and the range(T). D) is this linear combo one to one? how about onto? what else could we possibly call it?
Let T : R2 → R3 be a linear transformation such that T( e⃗1 ) =...
Let T : R2 → R3 be a linear transformation such that T( e⃗1 ) = (2,3,-5) and T( e⃗2 ) = (-1,0,1). Determine the standard matrix of T. Calculate T( ⃗u ), the image of ⃗u=(4,2) under T. Suppose T(v⃗)=(3,2,2) for a certain v⃗ in R2 .Calculate the image of ⃗w=2⃗u−v⃗ . 4. Find a vector v⃗ inR2 that is mapped to ⃗0 in R3.
The linear transformation is such that for any v in R2, T(v) = Av. a) Use...
The linear transformation is such that for any v in R2, T(v) = Av. a) Use this relation to find the image of the vectors v1 = [-3,2]T and v2 = [2,3]T. For the following transformations take k = 0.5 first then k = 3, T1(x,y) = (kx,y) T2(x,y) = (x,ky) T3(x,y) = (x+ky,y) T4(x,y) = (x,kx+y) For T5 take theta = (pi/4) and then theta = (pi/2) T5(x,y) = (cos(theta)x - sin(theta)y, sin(theta)x + cos(theta)y) b) Plot v1 and...
Consider a transformation T : R2×2 → R2×2 such that T(M) = MT . This is...
Consider a transformation T : R2×2 → R2×2 such that T(M) = MT . This is infact a linear transformation. Based on this, justify if the following statements are true or not. (2) a) T ◦ T is the identity transformation. b) The kernel of T is the zero matrix. c) Range T = R2×2 d) T(M) =-M is impossible.
Find the rank and the nullity of the linear transformation: T : P2 → P1, T(?...
Find the rank and the nullity of the linear transformation: T : P2 → P1, T(? + ?? + ??^2) = (? + ?) + (? − ?)x
Consider the linear transformation T which transforms vectors x C) in the y-axis. a) Express the...
Consider the linear transformation T which transforms vectors x C) in the y-axis. a) Express the vector X = T(x), the result of the linear transformation T on x in terms of the components x and y of X. by reflection [10 Marks] b) Find a matrix T such that T(x) = TX, using matrix multiplication. Calculate the matrix product T2 represent? Explain geometrically (or logically) why it should be this. c) T T . What linear transformation does this...
Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that...
Let T(x1, x2) = (-x1 + 3x2, x1 - x2) be a transformation. a) Show that T is invertible. b)Find T inverse.
Prove that any linear transformation ? : R? → R? maps a line passing through the...
Prove that any linear transformation ? : R? → R? maps a line passing through the origin to either the zero vector or a line passing through the origin. Generalize this for planes and hyperplanes. What are the images of these under linear transformations?
Prove that any linear transformation ? : R? → R? maps a line passing through the...
Prove that any linear transformation ? : R? → R? maps a line passing through the origin to either the zero vector or a line passing through the origin. Generalize this for planes and hyperplanes. What are the images of these under linear transformations?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT