Question

In: Civil Engineering

Find the required rectangular cross-sectional area for a tied reinforced concrete column which should support a...

Find the required rectangular cross-sectional area for a tied reinforced concrete column which should support a load of 300 tons. Use 4000 psi concrete, ultimate steel stress of 60,000 psi and 4% steel.

Solutions

Expert Solution

Title : Cross section area for given reinforced rectangular concrete column.

Here we have converted "tons" into "Kilonewtons" and "psi" into "N/mm²" for only your better convenience and understanding.

Please guys don't get confuse in units. Other hand we have used formula to calculate area of rectangular concrete column by substituting the given values.

Always remember in design any structure the providing term should be always greater than the required term. As here we have calculated provided area(69000 mm² ) that is greater than required area (63638.11 mm²).

And lastly do upvote guys and do comments for further clarification on subject matter.


Related Solutions

the reinforced concrete tied column that is part of braced frame sized to the dimensions 375mm...
the reinforced concrete tied column that is part of braced frame sized to the dimensions 375mm by 300mm .the column carries vertical ultimate load Pu=490kN (dead load only PD=134kN) and ultimate moment about strong axis Mu=110kN at top and Mu=117kN at bottom bent column in single curvature. if the clear height of the column Lu=4.80m k=0.83f'c=28MPa and fy=420 MPa , determine the reinforcement required
Design a square concrete column footing to support a 500-mm x 500-mm reinforced concrete column. The...
Design a square concrete column footing to support a 500-mm x 500-mm reinforced concrete column. The center of the column and footing must coincide. Loads: ???=350 ??, ???=480 ??, ???=100 ??−?, ???=130 ??−? Column Design Criteria: ??′=28 ???, ??=400??? Footing Design Criteria: ??′=28 ???, ??=400???, ??=175 ???,??=1.50 ?, ??=16 ??/?3,??=24 ??/?3, ??=20 ??, assume a thickness of the footing of 500 mm.
Design a square concrete column footing to support a 400-mm x 400-mm reinforced concrete column. The...
Design a square concrete column footing to support a 400-mm x 400-mm reinforced concrete column. The center of the column and footing must coincide. Loads: ???=350 ??, ???=480 ??, ???=100 ??−?, ???=130 ??−? Column Design Criteria: ??′=28 ???, ??=400??? Footing Design Criteria: ??′=28 ???, ??=400???, ??=180 ???,??=1.70 ?, ??=16 ??/?3,??=24 ??/?3, ??=25 ??, assume a thickness of the footing of 700 mm.
A continuous and aligned fiber-reinforced composite having a cross-sectional area of 1190 mm2 is subjected to...
A continuous and aligned fiber-reinforced composite having a cross-sectional area of 1190 mm2 is subjected to an external tensile load. If the stresses sustained by the fiber and matrix phases are 144 and 2.16 MPa, respectively, the force sustained by the fiber phase is 74400 N, and the total longitudinal strain is 0.00119, determine the following: (a) The force sustained by the matrix phase (in N). (b) The modulus of elasticity of the composite material in the longitudinal direction (in...
A continuous and aligned fibrous reinforced composite having a cross-sectional area of 875 mm2 is subjected...
A continuous and aligned fibrous reinforced composite having a cross-sectional area of 875 mm2 is subjected to an external tensile load. If the stresses sustained by the fiber and matrix phases are 255 MPa and 8.35 MPa, respectively, the force sustained by the fiber phase is 85,800 N, and the total longitudinal composite strain is 1.65 x 10-3, determine the following: (20 Points) (a) Volume fraction of fiber and matrix (b) The force sustained by the matrix phase (c) The...
A continuous and aligned fibrous reinforced composite having a cross-sectional area of 875 mm2 is subjected...
A continuous and aligned fibrous reinforced composite having a cross-sectional area of 875 mm2 is subjected to an external tensile load. If the stresses sustained by the fiber and matrix phases are 255 MPa and 8.35 MPa, respectively, the force sustained by the fiber phase is 85,800 N, and the total longitudinal composite strain is 1.65 x 10-3, determine the following: (a) Volume fraction of fiber and matrix (b) The force sustained by the matrix phase (c) The modulus of...
Design a reinforced concrete steel rectangular tie column with ACI standards, total LL = 14.0625 kips,...
Design a reinforced concrete steel rectangular tie column with ACI standards, total LL = 14.0625 kips, total DL = 18.95625kips, cross-section 12in by 12 in, Hight of column 12ft. Show all the steps and which table used. Assume the information which is not given with justifications. Show drawing as well. If the high is not suitable you can change it.
What will be the length (L in meter) of a rectangular footing to support rectangular column...
What will be the length (L in meter) of a rectangular footing to support rectangular column 20x70 cm and carries a dead load of 625 kN and live load of 426 kN. The net allowable bearing pressure is 155 kPa. The design should be according to (ACI) code with the following parameters: fc’ = 28 MPa, fy = 420 MPa.
When cross sectional area of the head group and acyl side chain is similar, which of...
When cross sectional area of the head group and acyl side chain is similar, which of the following lipid aggregates formation is favored? Seleccione una: a. Liposome b. Micelles c. Bilayer d. Myelin sheath e. Any of these may be formed, it depends on the acyl side chain polarity
Q1. The short tied column is to be used to support the following factored load and...
Q1. The short tied column is to be used to support the following factored load and moment: P= 1250 kN and M= 250 kN.m [10 marks]. fc=28 MPa fy=420 MPa a) Determine required dimensions and reinforcing bars using appropriate ACI column approach [2 marks]. b) Determine maximum ACI design axial load strength for selected column [2 marks]. c) Determine balanced failure point on axial moment interaction diagram [2 marks]. d) Determine the tie size and spacing [2 marks]. e) Draw...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT