Question

In: Other

Two moles of gas are confined in a piston–cylinder device. Initially, the temperature is at 300...

Two moles of gas are confined in a piston–cylinder device. Initially, the temperature is at 300 K and the pressure is 1 bar. The gas is compressed isothermally to 5 bar. If the ideal gas heat capacity is C ig P = 7R/2, find Q, W, ?U, ?H, and ?S if:

(a) the gas is ideal, or

(b) the gas satisfies the van der Waals equation of state with a = 5.0 × 106 bar · cm6/mol2 and b = 30 cm3/mol.

(c) Comment on the differences

Solutions

Expert Solution

Given:

2 moles of a gas

T1= 300 K

P1= 1 bar

P2= 5 bar

Cig= 7R/2

  • As given process is an isothermal compression process

    As they are the function of temperature

(a)

As is zero,

It is given that gas behaves Ideally

Calculate   and     by using above equation

use   

For an isothermal process work is calculated as,

(b)

Gas satisfies van der Waals equation of state given by

Calculate   and   by using above equation

Similarly,

Now, calculate work by using formula

putting respective values in above equation we get,

(c)

from above calculation, it is evident that considering gas as ideal may lead to giving work or heat more by just 1%

which is a negligible error


Related Solutions

Two moles of nitrogen gas at 25°C, confined within a cylinder by a piston maintaining a...
Two moles of nitrogen gas at 25°C, confined within a cylinder by a piston maintaining a constant pressure of 1 atm, is heated with 5.30 kJ of energy. Assume all the energy is used to do work of expansion of the gas at 1 atm. What will be the final temperature of the gas? Recall ∆H = ∆E + P∆V and watch your units!
11. A gas in a piston-cylinder device is compressed, and as a result its temperature rises....
11. A gas in a piston-cylinder device is compressed, and as a result its temperature rises. Is this a heat or work interaction?
The drawing shows an ideal gas confined to a cylinder by a massless piston that is...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is attached to an ideal spring. Outside the cylinder is a vacuum. The cross-sectional area of the piston is A = 2.50 × 10-3 m2. The initial pressure, volume, and temperature of the gas are, respectively, P0, V0 = 6.00 × 10-4 m3 and T0 = 273 K, and the spring is initially stretched by an amount x0 = 0.090 m with respect to its...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is attached to an ideal spring. Outside the cylinder is a vacuum. The cross-sectional area of the piston is A = 2.50 × 10-3 m2. The initial pressure, volume, and temperature of the gas are, respectively, P0, V0 = 6.00 × 10-4 m3 and T0 = 273 K, and the spring is initially stretched by an amount x0 = 0.092 m with respect to its...
A piston-cylinder device initially contains 0.3 m3 of nitrogen gas at 350 kPa and 35 ℃.
A piston-cylinder device initially contains 0.3 m3 of nitrogen gas at 350 kPa and 35 ℃. An electric heater within the device is turned on and is allowed to pass a 240W for 6 minutes. Nitrogen expands at constant pressure, and a heat loss of 3000 J occurs during the process. Determine the final temperature of the nitrogen. (Average CP for Nitrogen is 1.039 kJ/kgK and molecular weight of Nitrogen is 28.01 kg/kmol.)  
A piston-cylinder device initially has a volume of 1.5 m3 containing steam at 300 kPa absolute...
A piston-cylinder device initially has a volume of 1.5 m3 containing steam at 300 kPa absolute and 150 oC. It is then heated so it expands at constant pressure until it reaches a temperature of 400 oC. Draw a diagram of the device showing system boundary and flows of energy. What boundary work is done by the cylinder, in kJ, during the expansion? State your assumptions. 1. What is the mass of steam in the piston-cylinder? 2. How much heat...
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature...
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature of 85 c until the original pressure has tripled? a)what is the work done on the gas? b)How much heat is transfered out of the gas? A monatomic ideal gas in a cylinder is held at a constant temperature 230kpa and is cooled and compressed from 1.7 to 1.2 a) what is the internal energy of the gas? b)How much heat is transferred out...
A piston-cylinder device, whose piston is resting on a set of stops, initially contains 2 kg...
A piston-cylinder device, whose piston is resting on a set of stops, initially contains 2 kg of air at 300 kPa and 27ºC. The mass of the piston is such that a pressure of 600 kPa is required to move it upward. Heat is now transferred to the air until its volume doubles. a) Determine the work done by the air and b) the total heat transferred to the air during this process. c) Also, sketch the process on a...
Thermodynamics An insulated piston/cylinder device contains ideal CO2 gas at 800 kPa, 300 K, which is...
Thermodynamics An insulated piston/cylinder device contains ideal CO2 gas at 800 kPa, 300 K, which is then compressed to 6 MPa in a reversible adiabatic process. Determine the final temperature and the specific work during the compression process using: (a) Ideal gas tables A.8, (b) Constant specific heats A.5.
A piston-cylinder device initially contains 0.20(kg) of steam at 3.5(MPa), 300(C). The steam loses heat to...
A piston-cylinder device initially contains 0.20(kg) of steam at 3.5(MPa), 300(C). The steam loses heat to the surroundings and the piston moves down, hitting a set of stops at which point the cylinder contains saturated liquid water. The cooling continues until the cylinder contains water at 220C. A) Sketch the above process on a P-v chart, indicating values B) Determine the pressureand qualityof the final mixture. C) Determine the boundary work (in kJ)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT