Question

In: Physics

Consider a sample of ideal gas (0.50 moles) confined in a piston assembly that has diathermal...

Consider a sample of ideal gas (0.50 moles) confined in a piston assembly that has diathermal walls (i.e. the walls allow heat exchange). The assembly is in contact with a thermal reservoir that holds the temperature constant at 300.K.

a) Suppose the ideal gas undergoes reversible isothermal compression from 25.0 L to 10.0 L. Calculate ΔS, ΔSsurrounding, and ΔStotal, where total = universe.

b) Suppose the ideal gas had instead been compressed isothermally by an external constant pressure from 25.0 L to 10.0 L. First determine the value of the minimum constant pressure for this process (in Pascals). Then, calculate ΔS, ΔSsurrounding, and ΔStotal.

Solutions

Expert Solution

a) Here, the process is an isothermal compression.

The heat released is given by

The initial volume is 25.0 L

The final volume is 10.0 L

Temperature is 300 K

n = 0.5 moles

R = 8.314 J/mol K

So,

The change in entropy of the system is given by

Since the process is reversible, the change total in entropy will be zero

So,

b) Here, the work done is equal to the heat released, since the temperature is kept constant.

If a constant pressure is applied to the piston, the work done on the piston is given by

Here, we are doing external work to the system instead of providing the heat Q. So, the heat absorbed/ released is zero. So,

The entropy change of the surroundings will be the same as before, since the work is done by the surroundings on the system.

So, total entropy change is


Related Solutions

Consider 10 moles of an ideal polyatomic gas in a container with a frictionless piston. The...
Consider 10 moles of an ideal polyatomic gas in a container with a frictionless piston. The initial pressure is 105 kPascals and initial volume is .3 m3.   The gas is isobarically compressed to .1 m3. Determine the resulting change in entropy of the environment. (assume the temperature of the environment is a constant 28 Celsius) Group of answer choices a) +453.6 J/K b) +426.4 J/K c) +313.8 J/K d) +349.2 J/K e) +376.4 J/K
The drawing shows an ideal gas confined to a cylinder by a massless piston that is...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is attached to an ideal spring. Outside the cylinder is a vacuum. The cross-sectional area of the piston is A = 2.50 × 10-3 m2. The initial pressure, volume, and temperature of the gas are, respectively, P0, V0 = 6.00 × 10-4 m3 and T0 = 273 K, and the spring is initially stretched by an amount x0 = 0.090 m with respect to its...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is...
The drawing shows an ideal gas confined to a cylinder by a massless piston that is attached to an ideal spring. Outside the cylinder is a vacuum. The cross-sectional area of the piston is A = 2.50 × 10-3 m2. The initial pressure, volume, and temperature of the gas are, respectively, P0, V0 = 6.00 × 10-4 m3 and T0 = 273 K, and the spring is initially stretched by an amount x0 = 0.092 m with respect to its...
A piston contains 620 moles of an ideal monatomic gas that initally has a pressure of...
A piston contains 620 moles of an ideal monatomic gas that initally has a pressure of 2.92 × 105 Pa and a volume of 4.1 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. The pressure of the gas is increased to 5.92 × 105 Pa while maintaining a constant volume. The volume of the gas...
Two moles of gas are confined in a piston–cylinder device. Initially, the temperature is at 300...
Two moles of gas are confined in a piston–cylinder device. Initially, the temperature is at 300 K and the pressure is 1 bar. The gas is compressed isothermally to 5 bar. If the ideal gas heat capacity is C ig P = 7R/2, find Q, W, ?U, ?H, and ?S if: (a) the gas is ideal, or (b) the gas satisfies the van der Waals equation of state with a = 5.0 × 106 bar · cm6/mol2 and b =...
A gas sample is confined within a chamber that has a movable piston. A small load...
A gas sample is confined within a chamber that has a movable piston. A small load is placed on the piston; and the system is allowed to reach equilibrium. If the total weight of the piston and load is 70.0 N and the piston has an area of 5.0*10^-4 ,m^2 what is the pressure exerted on the piston by the gas. Note: Atmospheric pressure is 1.013*10^5 Pa
Two moles of nitrogen gas at 25°C, confined within a cylinder by a piston maintaining a...
Two moles of nitrogen gas at 25°C, confined within a cylinder by a piston maintaining a constant pressure of 1 atm, is heated with 5.30 kJ of energy. Assume all the energy is used to do work of expansion of the gas at 1 atm. What will be the final temperature of the gas? Recall ∆H = ∆E + P∆V and watch your units!
Suppose that 132 moles of a monatomic ideal gas is initially contained in a piston with...
Suppose that 132 moles of a monatomic ideal gas is initially contained in a piston with a volume of 0.94 m3at a temperature of 348 K. The piston is connected to a hot reservoir with a temperature of 1064 K and a cold reservoir with a temperature of 348 K. The gas undergoes a quasi-static Stirling cycle with the following steps: The temperature of the gas is increased to 1064 K while maintaining a constant volume. The volume of the...
Please include detailed work for answers A piston contains 770 moles of an ideal monatomic gas...
Please include detailed work for answers A piston contains 770 moles of an ideal monatomic gas that initally has a pressure of 1.23 × 105 Pa and a volume of 4.2 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. The pressure of the gas is increased to 4.23 × 105 Pa while maintaining a constant...
Consider a container with a frictionless piston that contains a given amount of an ideal gas....
Consider a container with a frictionless piston that contains a given amount of an ideal gas. Let’s assume that initially the external pressure is 2.20 bar, which is the sum of a 1 bar atmospheric pressure and the pressure created by a very large number of very small pebbles that rest on top of the piston. The initial volume of gas is   0.300 L   and the initial temperature is 25°C. Now, you will increase the volume of the gas by...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT