Question

In: Mechanical Engineering

11. A gas in a piston-cylinder device is compressed, and as a result its temperature rises....

11. A gas in a piston-cylinder device is compressed, and as a result its temperature rises. Is this a heat or work
interaction?

Solutions

Expert Solution


Related Solutions

cooling a gas in a piston cylinder. if the boundary work of piston cylinder is compressed...
cooling a gas in a piston cylinder. if the boundary work of piston cylinder is compressed W = -10 kj determine if it is gained or lost by the gas.
Two moles of gas are confined in a piston–cylinder device. Initially, the temperature is at 300...
Two moles of gas are confined in a piston–cylinder device. Initially, the temperature is at 300 K and the pressure is 1 bar. The gas is compressed isothermally to 5 bar. If the ideal gas heat capacity is C ig P = 7R/2, find Q, W, ?U, ?H, and ?S if: (a) the gas is ideal, or (b) the gas satisfies the van der Waals equation of state with a = 5.0 × 106 bar · cm6/mol2 and b =...
10 kg of gaseous oxygen is compressed in a piston-cylinder device from an initial state of...
10 kg of gaseous oxygen is compressed in a piston-cylinder device from an initial state of 0.8 m^3/kg, 25 C to a final state of 0.1 m^3/kg, 287 C, with all heat transfer taking place with the surroundings at 25 C. If the process is reversible, determine: a) the work done in the process; b) the overall heat transfer to the oxygen; and c) the change in entropy of the oxygen and of the surroundings I struggle a lot with...
Consider 50 moles of carbon dioxide in a piston-cylinder that is isothermally compressed at temperature of...
Consider 50 moles of carbon dioxide in a piston-cylinder that is isothermally compressed at temperature of T=350 K from 100 kPa to 400 kPa. What are the changes in the total entropy (of the Universe), the system, and the surroundings if the gas is compressed using a heat reservoir at a temperature of 350 K? Using a heat reservoir at a temperature of 250 K? You can assume that the processes within the piston-cylinder system are internally reversible.
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature...
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature of 85 c until the original pressure has tripled? a)what is the work done on the gas? b)How much heat is transfered out of the gas? A monatomic ideal gas in a cylinder is held at a constant temperature 230kpa and is cooled and compressed from 1.7 to 1.2 a) what is the internal energy of the gas? b)How much heat is transferred out...
An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as follows:...
An ideal gas is contained in a piston-cylinder device and undergoes a power cycle as follows: 1-2 isentropic compression from an initial temperature T1 5 208C with a compression ratio r 5 5 2-3 constant pressure heat addition 3-1 constant volume heat rejection The gas has constant specific heats with cv 5 0.7 kJ/kg·K and R 5 0.3 kJ/kg·K. (a) Sketch the P-v and T-s diagrams for the cycle. (b) Determine the heat and work interactions for each pro- cess,...
One-quarter kilogram of air is compressed in a piston-cylinder device from 350 K and 150 kPa...
One-quarter kilogram of air is compressed in a piston-cylinder device from 350 K and 150 kPa to 550 K and 900 kPa. Determine a. The entropy change, in KJ/K. b. The direction of any heat transfer by using the entropy balance. c. What-if scenario: If this process occurs adiabatically, is this process reversible, irreversible, or impossible process? Please answer the nature of this process and why.
Air of 0.5 kg mass is compressed in a piston-cylinder device from 300 K, 120 kPa...
Air of 0.5 kg mass is compressed in a piston-cylinder device from 300 K, 120 kPa to 500K, 940 kPa. (a) Determine the entropy change in kJ/K using (i) approximate analysis and (ii) exact analysis. (b) Determine the direction of heat transfer (into the device or out of the device).
One mole of an ideal gas (CP = 5R/2) in a closed piston/cylinder is compressed from...
One mole of an ideal gas (CP = 5R/2) in a closed piston/cylinder is compressed from Ti = 298 K, Pi = 0.1 MPa to Pf = 0.25 MPa by the following pathways. For each pathway, calculate ΔU, ΔH, Q, and WEC: (a) isothermal; (b) constant volume; (c) adiabatic. i need your help as soon as possible please!!! please give me step by step so i can understand it Thank you!
A piston and cylinder device (closed system) contain 2.25 mol of an ideal gas which is...
A piston and cylinder device (closed system) contain 2.25 mol of an ideal gas which is compressed irreversibly at constant temperature from 423 K and 200 kPa to 8 bar. The irreversible work applied for the compression is 15 % larger than the reversible work for the same process. Determine the entropy change of the gas, the surroundings and the total entropy change if the heat is rejected from the gas to surroundings maintained at 25 oC.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT