Question

In: Civil Engineering

A simply supported beam 10m long carries a uniform load of 24 kN/m. Using E =...

A simply supported beam 10m long carries a uniform load of 24 kN/m. Using E = 200 GPa, I = 240x10^6 mm4

Using CBM (conjugate beam method):

A. Determine the rotation (in degrees) of the beam at a point 4m from the left support.

B. Determine the deflection at a point 4m from the left support.

Solutions

Expert Solution


Related Solutions

A simply supported beam of 10m span carries a uniformly distributed load of 50kN/m spread over...
A simply supported beam of 10m span carries a uniformly distributed load of 50kN/m spread over 5m from the left support and a 5kN concentrated load on its center . Its base is 250mm while deep is 500mm. Calculate the maximum deflection in mm. E = 2.0x10^5 N/mm2. Use the area moment method
A 6-m span simply supported beam carries a uniformly distributed ultimate load of 70 kN/m. The...
A 6-m span simply supported beam carries a uniformly distributed ultimate load of 70 kN/m. The dimensions of the beam section are b = 300 mm, d = 700 mm. The beam is reinforced with bars of 25-mm diameter in one row. f’c = 25 MPa, and Fy = 420 MPa. Use # 10 U-shaped stirrups. Neglect the column width. The stirrup spacings (s) is equal to: a. 450 mm                    b. 350 mm c. 400 mm                    d. 500 mm                   
simply supported T-beam of 6 m clear span carries an ultimate load of 38 kN/m. The...
simply supported T-beam of 6 m clear span carries an ultimate load of 38 kN/m. The beam section dimensions, support particulars and tension reinforcement are shown in Figure Q1. Design the shear reinforcement for the beam. Data Given: The characteristic strength of the concrete is             25 N/mm2. The characteristic strength of steel reinforcement is         460N/mm2. The characteristic strength of shear reinforcement is         250N/mm2. Nominal maximum aggregate size (hagg) is             20...
A cantilever beam 4m long carries a uniform load of 3.5 kN/m over a portion 1.5m...
A cantilever beam 4m long carries a uniform load of 3.5 kN/m over a portion 1.5m from the free end. E = 200 GPa and I = 30 x 10^6 mm^4 Using Area Moment Method a. Determine the rotation at the free end. b. Determine the deflection at the free end A simply supported beam of length 7m has a concentrated couple Mo of 10kNm (Counterclockwise) applied at one end. Using Double Integration Method The maximum deflection is located at...
A cantilever beam 4m long carries a uniform load of 3.5 kN/m over a portion 1.5m...
A cantilever beam 4m long carries a uniform load of 3.5 kN/m over a portion 1.5m from the free end. E = 200 GPa and I = 30 x 10^6 mm4 Using AMM (Area Moment Method): Determine the rotation at the free end. Determine the deflection at the free end.
A simply supported flanged beam subjected to a factored load of 60 kN/m (including dead load...
A simply supported flanged beam subjected to a factored load of 60 kN/m (including dead load and live load). The beam has an overall depth of 600 mm including slab thickness of 100 mm. The width of the beam is 230 mm, effective span of the beam is 6.25 m and effective cover to the tension reinforcement is 50 mm. Assume M25 grade concrete and Fe415 steel. Check whether the beam needs to be designed as singly reinforced or doubly...
A simply supported reinforced concrete beam with uniformly distributed load of 10 kN/m has a span...
A simply supported reinforced concrete beam with uniformly distributed load of 10 kN/m has a span of 6.0 metres. The beam cross-section is 225 mm breadth by 300 mm depth. Sketch and design the beam. Make necessary and realistic assumptions where applicable
A simply supported beam 10-m long is acted upon by a uniformly distributed dead load of...
A simply supported beam 10-m long is acted upon by a uniformly distributed dead load of 20 kN/m and a uniformly distributed live load of 48 kN/m throughout its span. Design the footings of each columns located at the supports using the following data Depth of Footing (Df)                                                   =             1.20 meters Allowable Soil Pressure (qall)                                      =             210 kPa Unit Weight of Soil (γs)                                                =             17 kN/m3 Unit Weight of Concrete (γc)                                      =             24 kN/m3 Design Compressive Strength of Concrete (f’c)     =             27.6 MPa Yield Strength of Reinforcing Steel (fy)                    =             276 MPa...
A simply supported beam spans 35ft and carries a simply distrusted dead load of 0.2kip/ft including...
A simply supported beam spans 35ft and carries a simply distrusted dead load of 0.2kip/ft including the beam self-weight and live load of 0.8kip/ft. Determine the minimum required plastic section modulus and select the lightest-weight W-shape to carry the moment. Assume full lateral support and A992 steel. Design by (a) LRFD and (b) ASD
a simply supported beam with a uniform distrivuted load of W compute its deflection at midspan...
a simply supported beam with a uniform distrivuted load of W compute its deflection at midspan and L/4. Draw the deformed structure. use L=8meters W=8
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT