Question

In: Civil Engineering

A simply supported beam spans 35ft and carries a simply distrusted dead load of 0.2kip/ft including...

A simply supported beam spans 35ft and carries a simply distrusted dead load of 0.2kip/ft including the beam self-weight and live load of 0.8kip/ft. Determine the minimum required plastic section modulus and select the lightest-weight W-shape to carry the moment. Assume full lateral support and A992 steel. Design by (a) LRFD and (b) ASD

Solutions

Expert Solution


Related Solutions

A Simply supported rectangular, tension-reinforced beam is to be designed for dead load of 0.75 k/ft...
A Simply supported rectangular, tension-reinforced beam is to be designed for dead load of 0.75 k/ft plus self weight and service live load of 2.0 k/ft, with a 30 -ft simple span. Material strength will be fy = 60 ksi and fc = 5 ksi for steel and normal weight concrete respectively. Start the design of the beam dimensions using the rules of thumbs in class. The total beam depth, h, must not exceed twice the width. Calculate the required...
A Simply supported rectangular, tension-reinforced beam is to be designed for dead load of 0.75 k/ft...
A Simply supported rectangular, tension-reinforced beam is to be designed for dead load of 0.75 k/ft plus self weight and service live load of 2.0 k/ft, with a 30 -ft simple span. Material strength will be fy = 60 ksi and fc = 5 ksi for steel and normal weight oncrete respectively. Startthe design of the beam dimensions using the rules of thumbs in class. The total beam depth, h, must not exceed twice the width. Calculate the required beam...
A simply supported flanged beam subjected to a factored load of 60 kN/m (including dead load...
A simply supported flanged beam subjected to a factored load of 60 kN/m (including dead load and live load). The beam has an overall depth of 600 mm including slab thickness of 100 mm. The width of the beam is 230 mm, effective span of the beam is 6.25 m and effective cover to the tension reinforcement is 50 mm. Assume M25 grade concrete and Fe415 steel. Check whether the beam needs to be designed as singly reinforced or doubly...
A simply supported beam 10-m long is acted upon by a uniformly distributed dead load of...
A simply supported beam 10-m long is acted upon by a uniformly distributed dead load of 20 kN/m and a uniformly distributed live load of 48 kN/m throughout its span. Design the footings of each columns located at the supports using the following data Depth of Footing (Df)                                                   =             1.20 meters Allowable Soil Pressure (qall)                                      =             210 kPa Unit Weight of Soil (γs)                                                =             17 kN/m3 Unit Weight of Concrete (γc)                                      =             24 kN/m3 Design Compressive Strength of Concrete (f’c)     =             27.6 MPa Yield Strength of Reinforcing Steel (fy)                    =             276 MPa...
A simply supported 7 ft long solid wooden beam is designed to carry a concentrated load...
A simply supported 7 ft long solid wooden beam is designed to carry a concentrated load P = 600 lbf in the center. The distance between supports is 72 inches. The cross sectional area is 2” (inches) wide and 6” (inches) high. Determine the moment of mass of the beam (lbm), inertia (in4) and deflection (in). This wood has the following material properties: Modulus of elasticity = 2.5 x 106 psi and Density = 40 lbm/ft3.
A simply supported beam 10m long carries a uniform load of 24 kN/m. Using E =...
A simply supported beam 10m long carries a uniform load of 24 kN/m. Using E = 200 GPa, I = 240x10^6 mm4 Using CBM (conjugate beam method): A. Determine the rotation (in degrees) of the beam at a point 4m from the left support. B. Determine the deflection at a point 4m from the left support.
A simply supported beam of 10m span carries a uniformly distributed load of 50kN/m spread over...
A simply supported beam of 10m span carries a uniformly distributed load of 50kN/m spread over 5m from the left support and a 5kN concentrated load on its center . Its base is 250mm while deep is 500mm. Calculate the maximum deflection in mm. E = 2.0x10^5 N/mm2. Use the area moment method
The service load bending moments on a beam are 128 kip-ft for dead load and 107...
The service load bending moments on a beam are 128 kip-ft for dead load and 107 kip-ft for live load. The beam is 12 in. wide, f’c is 3000 psi and fy is 60 ksi. Determine Mu, Mt, p, R, the depth of the beam and the As of tensile reinforcing required. How many no. 8 bars or No. 10 bars would have the required As?
A 6-m span simply supported beam carries a uniformly distributed ultimate load of 70 kN/m. The...
A 6-m span simply supported beam carries a uniformly distributed ultimate load of 70 kN/m. The dimensions of the beam section are b = 300 mm, d = 700 mm. The beam is reinforced with bars of 25-mm diameter in one row. f’c = 25 MPa, and Fy = 420 MPa. Use # 10 U-shaped stirrups. Neglect the column width. The stirrup spacings (s) is equal to: a. 450 mm                    b. 350 mm c. 400 mm                    d. 500 mm                   
simply supported T-beam of 6 m clear span carries an ultimate load of 38 kN/m. The...
simply supported T-beam of 6 m clear span carries an ultimate load of 38 kN/m. The beam section dimensions, support particulars and tension reinforcement are shown in Figure Q1. Design the shear reinforcement for the beam. Data Given: The characteristic strength of the concrete is             25 N/mm2. The characteristic strength of steel reinforcement is         460N/mm2. The characteristic strength of shear reinforcement is         250N/mm2. Nominal maximum aggregate size (hagg) is             20...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT