Question

In: Physics

The puck in Figure 10.24 has a mass of 0.120 kg. The distance of the puck...

The puck in Figure 10.24 has a mass of 0.120 kg. The distance of the puck from the center of rotation is originally 39.5 cm, and the puck is sliding with a speed of 80.0 cm/s. The string is pulled downward 18.0 cm through the hole in the frictionless table. Determine the work done on the puck. (Suggestion: Consider the change of kinetic energy.)

The puck in Figure 10.24 has a mass of 0.120 kg. T

Solutions

Expert Solution


Related Solutions

the puck in the figure below has a mass of 0.120 kg. its original distance from...
the puck in the figure below has a mass of 0.120 kg. its original distance from the center of rotation is 44.0 cm, and the puck is moving with a speed of 78.2 cm/s. the string is pulled downward 17.7 cm through the hole in the frictionless table. determine the work done on the puck.
On a frictionless horizontal air table, puck A (with mass 0.253 kg) is moving toward puck...
On a frictionless horizontal air table, puck A (with mass 0.253 kg) is moving toward puck B (with mass 0.374 kg) which is initially at rest. After the collision, puck A has velocity 0.119 m/s to the left and puck B has velocity 0.649 m/s to the right. Part A: What was the speed vAi of puck A before the collision? Part B: Calculate ΔK, the change in the total kinetic energy of the system that occurs during the collision.
Two pucks are sliding across a frictionless surface. Puck A has a mass of .330 kg...
Two pucks are sliding across a frictionless surface. Puck A has a mass of .330 kg and a velocity of 5.50 m/s in the x direction. puck be has a mss of .440 kg and a velocity of 6.60 m/s in the negative x direction. the pucks collide an bounce of each other. after the collision puck a has a velocity of 1.10 m/s in the positive y-direction. What are the x and y components of the velocity of puck...
Block A in the figure below has mass 1.30 kg , and block B has mass...
Block A in the figure below has mass 1.30 kg , and block B has mass 2.85 kg . The blocks are forced together, compressing a spring S between them; then the system is released from rest on a level, frictionless surface. The spring, which has negligible mass, is not fastened to either block and drops to the surface after it has expanded. Block B acquires a speed of 1.20 m/s . Part A What is the final speed of...
In the figure below, the hanging object has a mass of m1 = 0.400 kg; the...
In the figure below, the hanging object has a mass of m1 = 0.400 kg; the sliding block has a mass of m2 = 0.810 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R1 = 0.020 0 m, and an outer radius of R2 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface...
On a frictionless horizontal air table, puck A (with mass 0.245 kg ) is moving toward...
On a frictionless horizontal air table, puck A (with mass 0.245 kg ) is moving toward puck B (with mass 0.374 kg ), which is initially at rest. After the collision, puck A has velocity 0.118 m/s to the left, and puck B has velocity 0.655 m/s to the right. A: What was the speed vAi of puck A before the collision? B: Calculate ΔKΔKDeltaK, the change in the total kinetic energy of the system that occurs during the collision.
On a frictionless, horizontal air table, puck A (with mass 0.250 kg ) is moving toward...
On a frictionless, horizontal air table, puck A (with mass 0.250 kg ) is moving toward puck B (with mass 0.400 kg ), which is initially at rest. After the collision, puck A has a velocity of 0.150 m/s to the left, and puck B has a velocity of 0.620 m/s to the right. a.What was the speed of puck A before the collision? b. Calculate the change in the total kinetic energy of the system that occurs during the...
On a frictionless horizontal air table, puck A (with mass 0.255 kg ) is moving toward...
On a frictionless horizontal air table, puck A (with mass 0.255 kg ) is moving toward puck B (with mass 0.375 kg ), which is initially at rest. After the collision, puck A has velocity 0.117 m/s to the left, and puck B has velocity 0.650 m/s to the right. What was the speed vAi of puck A before the collision? Calculate ΔK, the change in the total kinetic energy of the system that occurs during the collision.
On a frictionless horizontal air table, puck A (with mass 0.245 kg ) is moving toward...
On a frictionless horizontal air table, puck A (with mass 0.245 kg ) is moving toward puck B (with mass 0.373 kg ), which is initially at rest. After the collision, puck A has velocity 0.118 m/s to the left, and puck B has velocity 0.647 m/s to the right. a. What was the speed vAi of puck A before the collision? b. Calculate ΔK, the change in the total kinetic energy of the system that occurs during the collision.
On a frictionless horizontal air table, puck A (with mass 0.251 kg ) is moving toward...
On a frictionless horizontal air table, puck A (with mass 0.251 kg ) is moving toward puck B (with mass 0.374 kg ), which is initially at rest. After the collision, puck A has velocity 0.116 m/s to the left, and puck B has velocity 0.652 m/s to the right. Calculate ΔK, the change in the total kinetic energy of the system that occurs during the collision.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT