Question

In: Chemistry

For C(s) + H2O(g) ⇌ CO(g) + H2(g) H = +. In which direction will the...

For C(s) + H2O(g) ⇌ CO(g) + H2(g) H = +. In which direction will the reaction shift if heat is removed from the system, C is added, H2O is removed, CO is added, and H2 is removed. (a) right, left, no change, left, right (b) left, left, right, left, right (c) left, right, left, left, right (d) left, no change, left, left, right (e) None of the above

Solutions

Expert Solution

The positive enthalpy of the reaction shows that the reaction is endothermic or there occurs a decrease in temperature as the equilibrium shifts to the right. So, if heat is further removed from the system, to compensate, the equilibrium will shift to the left, a reaction that will release heat to compensate the loss of heat by external source.

Next, if carbon is added to the system, it will increase the concentration of reactants in the equilibrium causing more formation of products. This shifts the equilibrium to the right.

If water is removed from the system, the concentration of reactants decrease. So, to maintain equilibrium rate, it will shift to the left.

Similarly, if CO, a product is added, the equilibrium will shift to the left as the rate of forward reaction will increase now and thus compensation occurs by increasing backward reaction rate.

Finally, if hydrogen is removed from the system, the concentration of products are decreased. This results in the increased rate of forward reaction, shifting it to the right.

Overall, the shifts are left, right, left, left and right which corresponds to OPTION C.


Related Solutions

3. C (s) + H2O (g) → CO (g) + H2 (g) Le Châtelier's principle predicts...
3. C (s) + H2O (g) → CO (g) + H2 (g) Le Châtelier's principle predicts that increasing the volume of the reaction vessel will ________.
Calculate the standard enthalpy change for the following reaction at 25 °C. H2O(g)+C(graphite)(s) ----> H2(g)+CO(g) deltaH...
Calculate the standard enthalpy change for the following reaction at 25 °C. H2O(g)+C(graphite)(s) ----> H2(g)+CO(g) deltaH rxn=_____kJ
Calculate ΔrH for the following reaction: C(s)+H2O(g)→CO(g)+H2(g) Use the following reactions and given ΔrH's. C(s)+O2(g)→CO2(g), ΔrH=...
Calculate ΔrH for the following reaction: C(s)+H2O(g)→CO(g)+H2(g) Use the following reactions and given ΔrH's. C(s)+O2(g)→CO2(g), ΔrH= -393.5 kJmol−1 2CO(g)+O2(g)→2CO2(g), ΔrH= -566.0 kJmol−1 2H2(g)+O2(g)→2H2O(g), ΔrH= -483.6 kJmol−1 Express your answer using one decimal place.
The following reaction was carried out in a 4.00 L reaction vessel at 1100 K: C(s)+H2O(g)⇌CO(g)+H2(g)...
The following reaction was carried out in a 4.00 L reaction vessel at 1100 K: C(s)+H2O(g)⇌CO(g)+H2(g) If during the course of the reaction, the vessel is found to contain 5.00 mol of C, 14.8 mol of H2O, 3.30 mol of CO, and 8.60 mol of H2, what is the reaction quotient Q? Enter the reaction quotient numerically.
1.) The following reaction was carried out in a 2.50L reaction vessel at 1100 K: C(s)+H2O(g)?CO(g)+H2(g)...
1.) The following reaction was carried out in a 2.50L reaction vessel at 1100 K: C(s)+H2O(g)?CO(g)+H2(g) If during the course of the reaction, the vessel is found to contain 5.50mol of C, 15.8mol of H2O, 3.10mol of CO, and 8.20mol of H2, what is the reaction quotient Q? 2.) The reaction 2CH4(g)?C2H2(g)+3H2(g) has an equilibrium constant of K = 0.154. If 6.70mol of CH4, 4.40mol of C2H2, and 10.90mol of H2 are added to a reaction vessel with a volume...
Consider the chemical reaction: C(s)+H2O(g)→CO(g)+H2(g) How many liters of hydrogen gas are formed from the complete...
Consider the chemical reaction: C(s)+H2O(g)→CO(g)+H2(g) How many liters of hydrogen gas are formed from the complete reaction of 1.16 mol of C? Assume that the hydrogen gas is collected at a pressure of 1.0 atm and temperature of 319 K. ( ANSWER SHOULD BE IN LITERS ) Express your answer using two significant figures. CH3OH can be synthesized by the reaction: CO(g)+2H2(g)→CH3OH(g) How many liters of H2 gas, measured at 741 mmHg and 88 ∘C, are required to synthesize 0.68...
For the equilibrium system CO (g) + 3 H2 (g) ⇌ H2O (g) + CH4 (g),...
For the equilibrium system CO (g) + 3 H2 (g) ⇌ H2O (g) + CH4 (g), ΔH = -206 kJ/mol, state whether the yield of CH4 will increase, decrease or remain the same for the following changes: Adding some H2 gas to the system Removing H2O from the system Increasing the volume of the system Decreasing the temperature on the system Adding a catalyst to the system
Use standard enthalpies of formation to calculate ΔH∘rxn for the following reaction: C(s)+H2O(g)→CO(g)+H2(g) Express your answer...
Use standard enthalpies of formation to calculate ΔH∘rxn for the following reaction: C(s)+H2O(g)→CO(g)+H2(g) Express your answer using four significant figures. Use standard enthalpies of formation to calculate ΔH∘rxn for the following reaction: N2O4(g)+4H2(g)→N2(g)+4H2O(g) Express your answer using four significant figures.
23.Consider the following equilibrium process at 686°C: CO2(g) + H2(g) ⇌ CO(g) + H2O(g) The equilibrium...
23.Consider the following equilibrium process at 686°C: CO2(g) + H2(g) ⇌ CO(g) + H2O(g) The equilibrium concentrations of the reacting species are [CO] = 0.0580 M, [H2] = 0.0430 M, [CO2] = 0.0900 M, and [H2O] = 0.0420 M. (a) Calculate Kc for the reaction at 686°C. ________ (b) If we add CO2 to increase its concentration to 0.460 mol / L, what will the concentrations of all the gases be when equilibrium is reestablished? CO2: M H2: M CO:...
Consider the reaction: CO(g) + H2O(g)<------> CO(g) + H2(g)   and K = 0.118 at 4000 K....
Consider the reaction: CO(g) + H2O(g)<------> CO(g) + H2(g)   and K = 0.118 at 4000 K. A reaction mixture initially contains a CO partial pressure of 1344 mbar and a H2O partial pressure of 1766 mbar at 4000K. Calculate the equilibrium partial pressures of each of the products.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT