Question

In: Chemistry

1.) The following reaction was carried out in a 2.50L reaction vessel at 1100 K: C(s)+H2O(g)?CO(g)+H2(g)...

1.) The following reaction was carried out in a 2.50L reaction vessel at 1100 K:

C(s)+H2O(g)?CO(g)+H2(g)

If during the course of the reaction, the vessel is found to contain 5.50mol of C, 15.8mol of H2O, 3.10mol of CO, and 8.20mol of H2, what is the reaction quotient Q?

2.) The reaction

2CH4(g)?C2H2(g)+3H2(g)

has an equilibrium constant of K = 0.154.

If 6.70mol of CH4, 4.40mol of C2H2, and 10.90mol of H2 are added to a reaction vessel with a volume of 5.90L , what net reaction will occur?

Options for #2:

a.) The reaction will proceed to the left to establish equilibrium.

b.)The reaction will proceed to the right to establish equilibrium.

c.) No further reaction will occur because the reaction is at equilibrium.

Solutions

Expert Solution

C (s ) + H2O -----------> CO   +   H2

             15.8/2.5              3.10/2.5   8.2/2.5

              6.32                           1.24              3.28

Qc = [CO][H2]/[H2O]

     =           1.24 x3.28/6.32

Reaction quiotient     = 0.6435

2)   2CH4 ---------->         C2H2 +    3H2

        6.7/5.9                        4.4/5.9 10.9/5.9

        1.14                           0.74           1.84

Qc= 0.74x(1.84)3/(1.14)2

        3.6

But kc= 0.154

Qc> Kc

So The reaction will proceed to the right to establish equilibrium.


Related Solutions

The following reaction was carried out in a 4.00 L reaction vessel at 1100 K: C(s)+H2O(g)⇌CO(g)+H2(g)...
The following reaction was carried out in a 4.00 L reaction vessel at 1100 K: C(s)+H2O(g)⇌CO(g)+H2(g) If during the course of the reaction, the vessel is found to contain 5.00 mol of C, 14.8 mol of H2O, 3.30 mol of CO, and 8.60 mol of H2, what is the reaction quotient Q? Enter the reaction quotient numerically.
Consider the reaction: CO(g) + H2O(g)<------> CO(g) + H2(g)   and K = 0.118 at 4000 K....
Consider the reaction: CO(g) + H2O(g)<------> CO(g) + H2(g)   and K = 0.118 at 4000 K. A reaction mixture initially contains a CO partial pressure of 1344 mbar and a H2O partial pressure of 1766 mbar at 4000K. Calculate the equilibrium partial pressures of each of the products.
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) The reaction between CO and H2 is carried out at a...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) The reaction between CO and H2 is carried out at a specific temperature with initial concentrations of CO = 0.32 M and H2 = 0.53 M. At equilibrium, the concentration of CH3OH is 0.16 M. Part A Find the equilibrium constant at this temperature. Express your answer using two significant figures.
Calculate the standard enthalpy change for the following reaction at 25 °C. H2O(g)+C(graphite)(s) ----> H2(g)+CO(g) deltaH...
Calculate the standard enthalpy change for the following reaction at 25 °C. H2O(g)+C(graphite)(s) ----> H2(g)+CO(g) deltaH rxn=_____kJ
Consider the reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) K=0.118 at 4000 K A reaction mixture initially contains a CO partial...
Consider the reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) K=0.118 at 4000 K A reaction mixture initially contains a CO partial pressure of 1361 mbar and a H2O partial pressure of 1781 mbar at 4000 K. Part A: Calculate the equilibrium partial pressure of CO in bar using three decimal places Part B: Calculate the equilibrium partial pressure of H2O in bar using three decimal places. Part C: Calculate the equilibrium partial pressure of CO2 in bar using three decimal places Part D: Calculate the...
For C(s) + H2O(g) ⇌ CO(g) + H2(g) H = +. In which direction will the...
For C(s) + H2O(g) ⇌ CO(g) + H2(g) H = +. In which direction will the reaction shift if heat is removed from the system, C is added, H2O is removed, CO is added, and H2 is removed. (a) right, left, no change, left, right (b) left, left, right, left, right (c) left, right, left, left, right (d) left, no change, left, left, right (e) None of the above
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1336 torr and a H2O partial pressure of 1764 torr at 2000 K. Part A Calculate the equilibrium partial pressure of CO2. Part B Calculate the equilibrium partial pressure of H2.
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1390 torr and a H2O partial pressure of 1710 torr at 2000 K. Calculate the equilibrium partial pressure of CO2.
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1390 torr and a H2O partial pressure of 1770 torr at 2000 K. A) Calculate the equilibrium partial pressure of CO2.
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO...
Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1346 torr and a H2O partial pressure of 1762 torr at 2000 K. A.) Calculate the equilibrium partial pressure of CO2. B.) Calculate the equilibrium partial pressure of H2
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT