In: Chemistry
The rate law for the reaction between catalase and hydrogen peroxide can be written as Rate = k [H2O2]^ x [catalase]^y . A catalase solution of unknown, but constant concentration is prepared. Can the partial order with respect to the peroxide (x) be found using this catalase solution? If so, how would you do it? Describe in detail the steps you would take or show a calculation.
YES WE CAN DO EASILY: IT'S LONG BUT GOT THROUGH IT CARE FULLY, IT'S EXPLAINED THROUGH EXAMPLES ALSO:
let's say we have this reaction
.. 1 A + 1 B ---> 1 AB
for every 1 A consumed, we consume exactly 1 B.. right?
so.. our rate equation will look like this
.. rate = k * [A]^x * [B]^y
and as we consume A and B (let's say we consume Z A's) it will look
like this
.. rate = k * [A - Z]^x * [B - Z]^y
now
.. IF.. [B] >>>> [A]...
.. THEN [B - Z] ≈ [B]
(because very little of the total amount of B was actually
consumed)
let's think of an example.. let's say
.. [A] = 10 mol / L
.. [B] = 1000 mol / L
if we consume 9 mol / L of A, we'll consume 9 mol / L of B as well
(see the balanced equation)
so that the final concentration of A and B will be
.. [A] = 10 - 9 = 1 mol / L
.. [B] = 1000 - 9 = 991 mol / L
and we can see that the concentration of A dropped significantly...
by an order of magnitude. 10x
BUT.. the concentration of B barely changed. 1000M to 991M that's a
0.9% change
and that's the idea. if [B] >>>> [A], we assume [B] is
essentially a constant!
PROOF and determination of x :
this problem..
.. rate = k * [H2O2]^x * [catalase]^y
is approximately .. (assuming [catalase] >>> [H2O2])
.. rate = k * [H2O2]^x * constant
which can be rewritten like this
.. rate = k' * [H2O2]^x
**********
so we run an experiment like this
.. run #.. .. [H2O2].... [Catalase].. . rate (measured)
.. .. 1.. .. . ..0.1M.. .. . .. 10M.. .. . ... rate1
.. .. 2.. .. . .0.05M.. .. . . 10M.. .. . .. .rate2
now we know that
.. rate1 = k' * [H2O2 #1]^x
.. rate2 = k' * [H2O2 #2]^x
dividing
.. (rate1 / rate2) = (k' / k') * ([H2O2 #1] / [H2O2 #2])^x
canceling k/k.
.. (rate1 / rate2) = ([H2O2 #1] / [H2O2 #2])^x
and we can then sub in the data
.. (rate1 measured / rate2 measurement) = (0.1M / 0.05M)^x
.. (rate1 measured / rate2 measurement) = (2)^x
and we can readily then determine "x"