Question

In: Chemistry

If the observed rate law for a reaction is: rate = k(NO)(O3), the reaction is A....

If the observed rate law for a reaction is: rate = k(NO)(O3), the reaction is

A. first-order overall

B. first-order in O3

C. third-order overall

D. second-order in NO

Solutions

Expert Solution

rate = k(NO)(O3)

Power of NO=1

So, Order with respect to NO=1

Power of O3=1

So, Order with respect to O3=1

Overall order = sum of order of all the reactants = Order with respect toNO + Order with respect to O3

                                                                                           = 1 +1

                                                                              =2

So, overall order=2

From above explanation, Answer should be :

B. first-order in O3


Related Solutions

If the rate law for the clock reaction is: Rate = k [ I-] [ BrO3...
If the rate law for the clock reaction is: Rate = k [ I-] [ BrO3 -] [H+] A clock reaction is run with the following initial concentrations: [I-] [BrO3-] [H+] [S2O32-] 0.002 0.008 0.02 0.0001 The reaction time is 28 seconds Calculate k in the rate law: Also: Rate = k [ I-] [ BrO3 -] [H+] A clock reaction is run at 19 ºC with the following initial concentrations [I-] [BrO3-] [H+] [S2O32-] 0.002 0.008 0.02 0.0001 Then...
. The reaction of 2O3(g) → 3O2(g) has the experimental rate: rate = k[O3]2 [O2]—1. The...
. The reaction of 2O3(g) → 3O2(g) has the experimental rate: rate = k[O3]2 [O2]—1. The following mechanism has been proposed: 1. O3 O2 + O fast, equilibrium 2. O + O3 → 2 O2 slow (A) Identify any intermediates. (B) What is the rate law predicted by this mechanism? (C) Is the rate law predicted by the mechanism consistent with the experimental rate law? (D) How would adding a catalyst effect this reaction?
Consider the reaction A → products at 312 K. For this reaction it was observed that...
Consider the reaction A → products at 312 K. For this reaction it was observed that the first three half-lives were 11.3 h, 22.6 h, and 45.2 h when [A]o 1.343 M. How long will it take for [A] to decrease by 63 %? Time for [A] to decrease by 63 % (in hours)= second order
Consider the reaction A → products at 312 K. For this reaction it was observed that...
Consider the reaction A → products at 312 K. For this reaction it was observed that the first three half-lives were 11.3 h, 22.6 h, and 45.2 h when [A]o 1.343 M. How long will it take for [A] to decrease by 63 %? Time for [A] to decrease by 63 % (in hours)= I believe second order
Consider the reaction A -> products at 312 K. For this reaction it was observed that...
Consider the reaction A -> products at 312 K. For this reaction it was observed that the first three half lives were 10.7 h, 5.35 h, and 2.675 h when [A] 2.873M. How long will it take for [A] to decrease by 47%? Time for [A] to decrease by 47% (in hours) = Anwser is 10.1h need help on how to get this anwser.
The rate law for the reaction below is given by Rate = k(P ). At 680°C,...
The rate law for the reaction below is given by Rate = k(P ). At 680°C, the half-life is 35.0 s. Given initial pressures of P = 0.67 atm, P = 0.75 atm, and P = 0.25 atm, how many seconds will it take for the pressure of PH to drop to 0.50 atm 4 PH (g) → P (g) + 6 H (g)
1. Assume that the rate law for a reaction is rate = k[A][B]^2 a) what is...
1. Assume that the rate law for a reaction is rate = k[A][B]^2 a) what is the overall order of the reaction? b) if the concentration of both A and B are doubled, how will this affect the rate of the reaction? c) how will doubling the concentration of A, while the concentration of B is kept constant, affect the value of k (assume that temperature does not change)? how is the rate affected? 2. It is found for the...
1. The rate law for a given reaction is rate = k[NOBr]2. The rate constant is...
1. The rate law for a given reaction is rate = k[NOBr]2. The rate constant is 1.0 x 10-5 1/M∙s, and the initial concentration was 0.100 M. What is the first half-life of this reaction? A) 0.50 s B) 6.9 x 104 s C) 1.0 x 10-5 s D) 1.0 x 106 s E) None of these 2. The reaction SO2Cl2 SO2 + Cl2 is first order in SO2Cl2. If the concentration of SO2Cl2 after 198 s is 1.47 x...
difference between the rate of a reaction, the reaction rate, and the rate law
Can you explain  the difference between the rate of a reaction, the reaction rate, and the rate law? Also is there a difference between average rate of concentration change and instantaneous rate of concentration change, and how do they relate to the rate law? Please explain!
For the reaction NO + O3 → NO2 + O2 the second order rate constant has...
For the reaction NO + O3 → NO2 + O2 the second order rate constant has a value of 1.8x10^-14 molecule-1 cm3 s-1 at 25°C. The concentration of NO in a relatively clean atmosphere is 0.10 ppbv (parts per billion by volume) and that of O3 is 15 ppbv. Calculate these two concentrations in units of molecule cm-3. Calculate the rate of the NO oxidation using concentration units of molecule cm-3. Show how the rate law may be expressed in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT