Question

In: Chemistry

Consider the following system at equilibrium where H° = 87.9 kJ/mol, and Kc = 1.20×10-2 ,...

Consider the following system at equilibrium where H° = 87.9 kJ/mol, and Kc = 1.20×10-2 , at 500 K. PCl5 (g) PCl3 (g) + Cl2 (g) When 0.17 moles of PCl5 (g) are removed from the equilibrium system at constant temperature: the value of Kc A. increases. B. decreases. C. remains the same. the value of Qc A. is greater than Kc. B. is equal to Kc. C. is less than Kc. the reaction must: A. run in the forward direction to reestablish equilibrium. B. run in the reverse direction to reestablish equilibrium. C. remain the same. It is already at equilibrium. the concentration of PCl3 will: A. increase. B. decrease. C. remain the same.

Solutions

Expert Solution

Sol :-

Reaction quotient (Qc) is ratio of product of the molar concentration of products to the product of the molar concentration of reactants raise to the power of stoichiometric coefficient at any stage of the reaction.

Equilibrium constant (Kc) is ratio of product of the molar concentration of products to the product of the molar concentration of reactants raise to the power of stoichiometric coefficient at equilibrium stage of the reaction.

If Qc < Kc, then reaction shift towards forward direction.

If Qc = Kc, then reaction is in equilibrium constant.

If Qc > Kc, then reaction shift towards backward direction.

Given reaction is :

PCl5 (g) <--------------------> PCl3 (g) + Cl2 (g)

When 0.17 moles of PCl5 are removed then reaction shift towards backward direction and therefore

1). Kc decreases

2). Qc greater than Kc

3). Backward direction.

4). Concentration of PCl3 decreases.

Because according to Le-Chatelier's principle when concentration of reactants decreases then equilibrium will shift towards backward direction.


Related Solutions

Consider the following system at equilibrium where Kc = 1.29×10-2 and H° = 108 kJ/mol at...
Consider the following system at equilibrium where Kc = 1.29×10-2 and H° = 108 kJ/mol at 600 K. COCl2 (g) CO (g) + Cl2 (g) The production of CO (g) is favored by: Indicate True (T) or False (F) for each of the following: ___ T F 1. decreasing the temperature. ___ T F 2. increasing the pressure (by changing the volume). ___ T F 3. decreasing the volume. ___ T F 4. adding COCl2 . ___ T F 5....
Consider the following system at equilibrium where Kc = 5.10×10-6 and H° = 268 kJ/mol at...
Consider the following system at equilibrium where Kc = 5.10×10-6 and H° = 268 kJ/mol at 548 K. NH4Cl (s) NH3 (g) + HCl (g) The production of NH3 (g) is favored by: Indicate True (T) or False (F) for each of the following: 1. decreasing the temperature. 2. decreasing the pressure (by changing the volume). 3. decreasing the volume. 4. adding NH4Cl . 5. adding HCl .
Consider the following system at equilibrium where Kc = 77.5 and H° = -108 kJ/mol at...
Consider the following system at equilibrium where Kc = 77.5 and H° = -108 kJ/mol at 600 K. CO (g) + Cl2 (g) COCl2 (g) The production of COCl2 (g) is favored by: Indicate True (T) or False (F) for each of the following: 1. increasing the temperature. 2. decreasing the pressure (by changing the volume). 3. increasing the volume. 4. removing COCl2 . 5. adding Cl2 .
Consider the following system at equilibrium where Kc = 0.159 and delta H° = -111 kJ/mol...
Consider the following system at equilibrium where Kc = 0.159 and delta H° = -111 kJ/mol at 723 K. N2(g) + 3 H2(g) = 2 NH3(g) The production of NH3(g) is favored by: Indicate True (T) or False (F) for each of the following: ___TF 1. increasing the temperature. ___TF 2. decreasing the pressure (by changing the volume). ___TF 3. increasing the volume. ___TF 4. adding NH3. ___TF 5. removing H2.
Consider the following system at equilibrium where Delta H° = 108 kJ, and Kc = 1.29×10-2,...
Consider the following system at equilibrium where Delta H° = 108 kJ, and Kc = 1.29×10-2, at 600 K. COCl2(g) <---> CO(g) +  Cl2(g)   If the VOLUME of the equilibrium system is suddenly  increased at constant temperature: The value of Kc A. increases. B. decreases. C. remains the same. The value of Qc A. is greater than Kc. B. is equal to Kc. C. is less than Kc. The reaction must: A. run in the forward direction to reestablish equilibrium. B. run...
consider the following system at equilibrium where delta H = 16.1 kj, and Kc = 6.50x10^-3,...
consider the following system at equilibrium where delta H = 16.1 kj, and Kc = 6.50x10^-3, at 298 K. 2NOBr forwsrd reverse arrows 2NO + Br2 if the VOLUME of the equilibrium system is suddenly increased at constant temperature: The value of Kc: increases decreases remains thesame the value of Qc: is greater than Kc equal to Kc is less than Kc the reaction must: run in the forward direction to restablish equilibrium run in the reverse remain the same....
1) The equilibrium constant, Kc, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) <---...
1) The equilibrium constant, Kc, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) <--- --->PCl3(g) + Cl2(g) Calculate the equilibrium concentrations of reactant and products when 0.279 moles of PCl5(g) are introduced into a 1.00 L vessel at 500 K. [PCl5] = M [PCl3] = M [Cl2] = M 2) The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K. H2 (g) + I2 (g) <---- ----> 2 HI (g) Calculate the equilibrium concentrations of...
1) The equilibrium constant, Kc, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) <---...
1) The equilibrium constant, Kc, for the following reaction is 1.20×10-2 at 500 K. PCl5(g) <--- --->PCl3(g) + Cl2(g) Calculate the equilibrium concentrations of reactant and products when 0.279 moles of PCl5(g) are introduced into a 1.00 L vessel at 500 K. [PCl5] = M [PCl3] = M [Cl2] = M 2) The equilibrium constant, Kc, for the following reaction is 55.6 at 698 K. H2 (g) + I2 (g) <---- ----> 2 HI (g) Calculate the equilibrium concentrations of...
Consider this gas phase equilibrium system: PCl5(g) equilibrium arrow PCl3(g) + Cl2 deltaH = +87.8 kJ/mol...
Consider this gas phase equilibrium system: PCl5(g) equilibrium arrow PCl3(g) + Cl2 deltaH = +87.8 kJ/mol Which of these statements are false? A) increasing the temperature causes the equilibrium constant to increase B) increasing the system volume shifts the equilibrium to the right C) increasing the temperature shifts the equilibrium to the right D) a catalyst speeds up the approach to equilibrium and shifts the position from equilibrium to the right. E) decreasing the total pressure of the system shifts...
Consider the following reaction where Kc = 6.50×10-3 at 298 K 2 NOBr (g)-> 2 NO...
Consider the following reaction where Kc = 6.50×10-3 at 298 K 2 NOBr (g)-> 2 NO (g) + Br2 (g) A reaction mixture was found to contain 8.52×10-2 moles of NOBr (g), 2.31×10-2 moles of NO (g), and 4.58×10-2 moles of Br2 (g), in a 1.00 liter container. Indicate True (T) or False (F) for each of the following: 1. In order to reach equilibrium NOBr(g) must be consumed . 2. In order to reach equilibrium Kc must increase ....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT