Question

In: Chemistry

Consider the following system at equilibrium where Kc = 77.5 and H° = -108 kJ/mol at...

Consider the following system at equilibrium where Kc = 77.5 and H° = -108 kJ/mol at 600 K.

CO (g) + Cl2 (g) COCl2 (g)

The production of COCl2 (g) is favored by: Indicate

True (T) or False (F) for each of the following:

1. increasing the temperature.

2. decreasing the pressure (by changing the volume).

3. increasing the volume.

4. removing COCl2 .

5. adding Cl2 .

Solutions

Expert Solution


Related Solutions

Consider the following system at equilibrium where Kc = 1.29×10-2 and H° = 108 kJ/mol at...
Consider the following system at equilibrium where Kc = 1.29×10-2 and H° = 108 kJ/mol at 600 K. COCl2 (g) CO (g) + Cl2 (g) The production of CO (g) is favored by: Indicate True (T) or False (F) for each of the following: ___ T F 1. decreasing the temperature. ___ T F 2. increasing the pressure (by changing the volume). ___ T F 3. decreasing the volume. ___ T F 4. adding COCl2 . ___ T F 5....
Consider the following system at equilibrium where Delta H° = 108 kJ, and Kc = 1.29×10-2,...
Consider the following system at equilibrium where Delta H° = 108 kJ, and Kc = 1.29×10-2, at 600 K. COCl2(g) <---> CO(g) +  Cl2(g)   If the VOLUME of the equilibrium system is suddenly  increased at constant temperature: The value of Kc A. increases. B. decreases. C. remains the same. The value of Qc A. is greater than Kc. B. is equal to Kc. C. is less than Kc. The reaction must: A. run in the forward direction to reestablish equilibrium. B. run...
Consider the following system at equilibrium where Kc = 0.159 and delta H° = -111 kJ/mol...
Consider the following system at equilibrium where Kc = 0.159 and delta H° = -111 kJ/mol at 723 K. N2(g) + 3 H2(g) = 2 NH3(g) The production of NH3(g) is favored by: Indicate True (T) or False (F) for each of the following: ___TF 1. increasing the temperature. ___TF 2. decreasing the pressure (by changing the volume). ___TF 3. increasing the volume. ___TF 4. adding NH3. ___TF 5. removing H2.
Consider the following system at equilibrium where Kc = 5.10×10-6 and H° = 268 kJ/mol at...
Consider the following system at equilibrium where Kc = 5.10×10-6 and H° = 268 kJ/mol at 548 K. NH4Cl (s) NH3 (g) + HCl (g) The production of NH3 (g) is favored by: Indicate True (T) or False (F) for each of the following: 1. decreasing the temperature. 2. decreasing the pressure (by changing the volume). 3. decreasing the volume. 4. adding NH4Cl . 5. adding HCl .
Consider the following system at equilibrium where H° = 87.9 kJ/mol, and Kc = 1.20×10-2 ,...
Consider the following system at equilibrium where H° = 87.9 kJ/mol, and Kc = 1.20×10-2 , at 500 K. PCl5 (g) PCl3 (g) + Cl2 (g) When 0.17 moles of PCl5 (g) are removed from the equilibrium system at constant temperature: the value of Kc A. increases. B. decreases. C. remains the same. the value of Qc A. is greater than Kc. B. is equal to Kc. C. is less than Kc. the reaction must: A. run in the forward...
consider the following system at equilibrium where delta H = 16.1 kj, and Kc = 6.50x10^-3,...
consider the following system at equilibrium where delta H = 16.1 kj, and Kc = 6.50x10^-3, at 298 K. 2NOBr forwsrd reverse arrows 2NO + Br2 if the VOLUME of the equilibrium system is suddenly increased at constant temperature: The value of Kc: increases decreases remains thesame the value of Qc: is greater than Kc equal to Kc is less than Kc the reaction must: run in the forward direction to restablish equilibrium run in the reverse remain the same....
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g)...
The equilibrium constant, Kc, for the following reaction is 77.5 at 600 K. CO(g) + Cl2(g) COCl2(g) Calculate the equilibrium concentrations of reactant and products when 0.576 moles of CO and 0.576 moles of Cl2 are introduced into a 1.00 L vessel at 600 K. [CO] = M [Cl2] = M [COCl2] = M
Consider this gas phase equilibrium system: PCl5(g) equilibrium arrow PCl3(g) + Cl2 deltaH = +87.8 kJ/mol...
Consider this gas phase equilibrium system: PCl5(g) equilibrium arrow PCl3(g) + Cl2 deltaH = +87.8 kJ/mol Which of these statements are false? A) increasing the temperature causes the equilibrium constant to increase B) increasing the system volume shifts the equilibrium to the right C) increasing the temperature shifts the equilibrium to the right D) a catalyst speeds up the approach to equilibrium and shifts the position from equilibrium to the right. E) decreasing the total pressure of the system shifts...
Consider the equilibrium CH4(g) + H2O(g) <--> CO(g) + 3H2(g), where delta h= 206 KJ. Which...
Consider the equilibrium CH4(g) + H2O(g) <--> CO(g) + 3H2(g), where delta h= 206 KJ. Which of the following disturbances will NOT cause the system to shift to the right to reestablish equilibrium? A.) The partial pressure of CH4 increases. B.) The partial pressure of CO decreases. C.) The volume decreases. D.) The temperature increases. E.) All of these will cause the system to shift to the right.
3. a) Using only the following information:    • ∆H°f for NO (g) is +90.4 kJ/mol    •...
3. a) Using only the following information:    • ∆H°f for NO (g) is +90.4 kJ/mol    • ∆H° = –56.6 kJ/mol for the reaction: NO (g) + 1/2 O2 (g) à  NO2 (g)   Determine ∆H°f for NO2 (g). b) Using only your answer to (a) and the following information:     •∆H° = –283.0 kJ/mol for the reaction: CO (g) + 1/2 O2 (g) à  CO2 (g)  Determine ∆H° for the reaction:   4 CO (g) + 2 NO2 (g) à  4 CO2 (g) + N2 (g) c)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT