Question

In: Math

PROBLEM 4 [Solving Ordinary Differential Equations]


PROBLEM 4 [Solving Ordinary Differential Equations] 

Solve the following ODE: 


\(\frac{d y}{d x}=1+\frac{x}{y} \quad y(1)=1\)

a) Using Euler's method, for 1≤x≤4 and a step of 0.5 

b) Using Euler's method, for  1≤x≤4 and a step of 0.25. 

c) Estimate your error in x-4 using the Richardson formula and provide an answer with the correct number of significant digits for y(4).

Solutions

Expert Solution


Related Solutions

This is a question about Ordinary Differential Equations. For solving linear differential equations, I have seen...
This is a question about Ordinary Differential Equations. For solving linear differential equations, I have seen people use the method of integrating factors and the method of variation of parameters. Is it true that either of these 2 methods can be used to solve any linear differential equation? If so, could you show me an example where a linear differential equation is solved using both of these methods. If not, could you explain using examples as to why this is...
Ordinary Differential Equations
The rate at which the ice melts is proportional to the amount of ice at the instant. Find the amount of ice left after 2 hours if half the quantity melts in 30 minutes. Solution. Let m be the amount of ice at any time t.
Ordinary Differential Equations
Solve the following problems. \( \frac{d y}{d t} \tan y=\sin (t+y)+\sin (t+y) \)  
Ordinary Differential Equations
Solve the following problems. (a) \( \frac{d y}{d t}=2+\frac{y}{t} \) (b)  \( 3 t+2 y \frac{d y}{d t}=y \)
Ordinary Differential Equations
Solve the following problems.      \( t y \frac{d y}{d t}=\sqrt{t^{2} y^{2}+t^{2}+y^{2}+1} \)
Ordinary Differential Equations
Write a differential equation in wich \( y^2=4(t+1) \) is a solutiion.
Ordinary Differential Equations
Solve the following problems. \( \cos (2 t+y) d y=d t \)
Ordinary Differential Equations
Solve the following problems. \( (2 t-y-1) d y=(3 t+y-4) d t \)
Ordinary Differential Equations
The rate at which a body cools is proportional to the difference between the temperature of the body and that of the surrounding air. If a body in air at 25°C will cool from 100° to 75° in one minute, find its temperature at the end of three minutes.
Ordinary Differential Equations
If the population of a country doubles in 50 years, in how many years will it treble, assuming that the rate of increase is proportional to the number of inhabitants?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT