In: Math
The owner of Maumee Ford-Volvo wants to study the relationship between the age of a car and its selling price. Listed below is a random sample of 12 used cars sold at the dealership during the last year.
Car | Age (years) | Selling Price ($000) | ||||||||
1 | 11 | 12.2 | ||||||||
2 | 8 | 11.0 | ||||||||
3 | 16 | 4.9 | ||||||||
4 | 18 | 4.1 | ||||||||
5 | 9 | 6.7 | ||||||||
6 | 8 | 13.6 | ||||||||
7 | 10 | 11.1 | ||||||||
8 | 16 | 9.0 | ||||||||
9 | 14 | 9.0 | ||||||||
10 | 18 | 4.2 | ||||||||
11 | 6 | 12.1 | ||||||||
12 | 6 | 10.4 |
1. Determine the regression equation. (Negative amounts should be indicated by a minus sign. Round your answers to 3 decimal places.)
a = | |
b = |
2. Estimate the selling price of an 7-year-old car (in $000). (Round your answer to 3 decimal places.)
Selling price |
3. Interpret the regression equation (in dollars). (Round your answer to the nearest dollar amount.)
For each additional year, the car decreases | in value. |
The statistical software output for this problem is:
Simple linear regression results:
Dependent Variable: Selling Price
Independent Variable: Age
Selling Price = 15.72003 - 0.5731454 Age
Sample size: 12
R (correlation coefficient) = -0.78121953
R-sq = 0.61030395
Estimate of error standard deviation: 2.1708211
Parameter estimates:
Parameter | Estimate | Std. Err. | Alternative | DF | T-Stat | P-value |
---|---|---|---|---|---|---|
Intercept | 15.72003 | 1.8021335 | ≠ 0 | 10 | 8.7230108 | <0.0001 |
Slope | -0.5731454 | 0.14482873 | ≠ 0 | 10 | -3.9574013 | 0.0027 |
Analysis of variance table for regression
model:
Source | DF | SS | MS | F-stat | P-value |
---|---|---|---|---|---|
Model | 1 | 73.802023 | 73.802023 | 15.661025 | 0.0027 |
Error | 10 | 47.124644 | 4.7124644 | ||
Total | 11 | 120.92667 |
Predicted values:
X value | Pred. Y | s.e.(Pred. y) | 95% C.I. for mean | 95% P.I. for new |
---|---|---|---|---|
7 | 11.708012 | 0.92168439 | (9.6543711, 13.761653) | (6.4532089, 16.962815) |
Hence,
1. Regression equation:
a = 15.720
b = -0.573
2. Selling price of 7-year old car = 11.708
3. For each additiona year, the car decreases $ 573 in value