In: Statistics and Probability
The owner of Maumee Ford-Volvo wants to study the relationship between the age of a car and its selling price. Listed below is a random sample of 12 used cars sold at the dealership during the last year.
Car | Age (years) | Selling Price ($000) | ||||||||
1 | 15 | 12.0 | ||||||||
2 | 10 | 10.1 | ||||||||
3 | 17 | 5.4 | ||||||||
4 | 19 | 4.9 | ||||||||
5 | 12 | 5.6 | ||||||||
6 | 11 | 12.6 | ||||||||
7 | 13 | 9.7 | ||||||||
8 | 17 | 9.0 | ||||||||
9 | 16 | 9.0 | ||||||||
10 | 19 | 4.9 | ||||||||
11 | 8 | 11.4 | ||||||||
12 | 8 | 9.9 |
Determine the regression equation. (Negative amounts should be indicated by a minus sign. Round your answers to 3 decimal places.)
A=___________ B=
Estimate the selling price of an 11-year-old car (in $000). (Round your answer to 3 decimal places.)
Interpret the regression equation (in dollars). (Round your answer to the nearest dollar amount.)
x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
15 | 12 | 1.56 | 10.84 | 4.11 |
10 | 10.1 | 14.06 | 1.94 | -5.22 |
17 | 5.4 | 10.56 | 10.95 | -10.75 |
19 | 4.9 | 27.56 | 14.50 | -19.99 |
12 | 5.6 | 3.06 | 9.66 | 5.44 |
11 | 12.6 | 7.56 | 15.15 | -10.70 |
13 | 9.7 | 0.56 | 0.98 | -0.74 |
17 | 9 | 10.56 | 0.09 | 0.95 |
16 | 9 | 5.06 | 0.09 | 0.66 |
19 | 4.9 | 27.56 | 14.50 | -19.99 |
8 | 11.4 | 33.06 | 7.25 | -15.48 |
8 | 9.9 | 33.06 | 1.42 | -6.85 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 165 | 104.5 | 174.25 | 87.349 | -78.575 |
mean | 13.750 | 8.708 | SSxx | SSyy | SSxy |
a)
sample size , n = 12
here, x̅ = Σx / n= 13.75 ,
ȳ = Σy/n = 8.71
SSxx = Σ(x-x̅)² = 174.2500
SSxy= Σ(x-x̅)(y-ȳ) = -78.6
estimated slope , ß1 = SSxy/SSxx = -78.6
/ 174.250 = -0.45093
intercept, ß0 = y̅-ß1* x̄ =
14.90866
so, regression line is Ŷ = 14.909
- 0.451 *x
b) a = 14.909 , b = -0.451
c) Predicted Y at X= 11 is
Ŷ = 14.9087 +
-0.4509 * 11
= 9.948
d) For each additional year, the car decreases $ 451 in value