In: Statistics and Probability
The owner of Maumee Ford-Volvo wants to study the relationship between the age of a car and its selling price. Listed below is a random sample of 12 used cars sold at the dealership during the last year.
| Car | Age (years) | Selling Price ($000) | ||||||||
| 1 | 15 | 12.0 | ||||||||
| 2 | 10 | 10.1 | ||||||||
| 3 | 17 | 5.4 | ||||||||
| 4 | 19 | 4.9 | ||||||||
| 5 | 12 | 5.6 | ||||||||
| 6 | 11 | 12.6 | ||||||||
| 7 | 13 | 9.7 | ||||||||
| 8 | 17 | 9.0 | ||||||||
| 9 | 16 | 9.0 | ||||||||
| 10 | 19 | 4.9 | ||||||||
| 11 | 8 | 11.4 | ||||||||
| 12 | 8 | 9.9 | ||||||||
Determine the regression equation. (Negative amounts should be indicated by a minus sign. Round your answers to 3 decimal places.)
A=___________ B=
Estimate the selling price of an 11-year-old car (in $000). (Round your answer to 3 decimal places.)
Interpret the regression equation (in dollars). (Round your answer to the nearest dollar amount.)
| x | y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) | 
| 15 | 12 | 1.56 | 10.84 | 4.11 | 
| 10 | 10.1 | 14.06 | 1.94 | -5.22 | 
| 17 | 5.4 | 10.56 | 10.95 | -10.75 | 
| 19 | 4.9 | 27.56 | 14.50 | -19.99 | 
| 12 | 5.6 | 3.06 | 9.66 | 5.44 | 
| 11 | 12.6 | 7.56 | 15.15 | -10.70 | 
| 13 | 9.7 | 0.56 | 0.98 | -0.74 | 
| 17 | 9 | 10.56 | 0.09 | 0.95 | 
| 16 | 9 | 5.06 | 0.09 | 0.66 | 
| 19 | 4.9 | 27.56 | 14.50 | -19.99 | 
| 8 | 11.4 | 33.06 | 7.25 | -15.48 | 
| 8 | 9.9 | 33.06 | 1.42 | -6.85 | 
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 165 | 104.5 | 174.25 | 87.349 | -78.575 | 
| mean | 13.750 | 8.708 | SSxx | SSyy | SSxy | 
a)
sample size ,   n =   12  
       
here, x̅ = Σx / n=   13.75   ,
    ȳ = Σy/n =   8.71  
          
       
SSxx =    Σ(x-x̅)² =    174.2500  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   -78.6  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   -78.6  
/   174.250   =   -0.45093
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
14.90866          
          
       
so, regression line is   Ŷ =   14.909
- 0.451   *x
b) a = 14.909 , b = -0.451
c) Predicted Y at X=   11   is  
           
   
Ŷ =   14.9087   +  
-0.4509   *   11  
=   9.948
d) For each additional year, the car decreases $ 451 in value