Question

In: Other

The reaction 2A + B → C obeys the rate law –rB = kCB2, where k...

The reaction 2A + B → C obeys the rate law –rB = kCB2, where k = 0.25 L/mol.s at 75˚C. A is available as a 1.5 M solution and B as a 1 M solution.

a) A 26 L/s stream of solution A and 30 L/s stream of solution B are combined just before being introduced into a CSTR. If a 150 L reactor is available, how many mole/h of C could be produced?

b) You receive some financing to increase C production. After some investigation, you find you could either add a second 150 L CSTR in series with the first or add another heater to increse the reactor temperature to 85 ˚C. Which is the best option? (The reaction has an activation energy of 70 kJ/mol.)

Solutions

Expert Solution

GIVEN

A.

for cstr  

substituting on above equation we get

  

above equation A

we put values in above equation we will get a quadratic equation for X

solving the values for X

we get X1.8,.55

we take X as .55

Now

So of C is produced.

B.

To increase production of c

if temperature is increased

from arrhenius equation we find new k value

substituting values of

using the same steps in b part to find X we replace the value of k with .246

Solving equation A

We get a quadratic equation


Solving above eqn we get

Another condition is adding a cstr of equal volume in series

-

Substituting the values we get equation

So this has better conversion cstr in series is used.


Related Solutions

Consider the following reaction at 283 K: 2A + B → C + D where rate...
Consider the following reaction at 283 K: 2A + B → C + D where rate = k[A][B]2. An experiment was performed where [A]o = 2.67 M and [B]o = 0.00241 M. A plot of 1/[B] vs. time has a slope of 10.01. What will the rate of this reaction be when [A] = [B] = 0.345 M?
The reaction 2NO(g) + Cl2(g) --> 2NOCl(g) obeys the rate law rate = k [NO]2 [Cl2]....
The reaction 2NO(g) + Cl2(g) --> 2NOCl(g) obeys the rate law rate = k [NO]2 [Cl2]. The following mechanism is proposed: NO (g) + Cl2 (g) --> NOCl2(g) NOCl2(g) + NO (g) -->2NOCl (g) a) What would the rate law be if the first step was rate determining? b) Based on the observed rate law, what can be concluded about the relative rates of the 2 reactions?
The rate law for the reaction below is given by Rate = k(P ). At 680°C,...
The rate law for the reaction below is given by Rate = k(P ). At 680°C, the half-life is 35.0 s. Given initial pressures of P = 0.67 atm, P = 0.75 atm, and P = 0.25 atm, how many seconds will it take for the pressure of PH to drop to 0.50 atm 4 PH (g) → P (g) + 6 H (g)
1. Assume that the rate law for a reaction is rate = k[A][B]^2 a) what is...
1. Assume that the rate law for a reaction is rate = k[A][B]^2 a) what is the overall order of the reaction? b) if the concentration of both A and B are doubled, how will this affect the rate of the reaction? c) how will doubling the concentration of A, while the concentration of B is kept constant, affect the value of k (assume that temperature does not change)? how is the rate affected? 2. It is found for the...
For a reaction A +B → C, the experimental rate law is found to be R=k[A]1[B]1/2. Find the rate of the reaction when [A] = 0.5 M, [B] = 0.1 M and k=0.03
For a reaction A +B → C, the experimental rate law is found to be R=k[A]1[B]1/2. Find the rate of the reaction when [A] = 0.5 M, [B] = 0.1 M and k=0.03.
If the observed rate law for a reaction is: rate = k(NO)(O3), the reaction is A....
If the observed rate law for a reaction is: rate = k(NO)(O3), the reaction is A. first-order overall B. first-order in O3 C. third-order overall D. second-order in NO
A. If the rate law for the reaction 2A + 3B products is first order in...
A. If the rate law for the reaction 2A + 3B products is first order in A and second order in B, then what is the rate law? B. A reaction was found to be third order in A. If the concentration of A is increased by a factor of 3, Then how much the reaction rate will be affected? C. The overall order of a reaction is 2. What will be the unit of the rate constant? Show calculation....
If the rate law for the clock reaction is: Rate = k [ I-] [ BrO3...
If the rate law for the clock reaction is: Rate = k [ I-] [ BrO3 -] [H+] A clock reaction is run with the following initial concentrations: [I-] [BrO3-] [H+] [S2O32-] 0.002 0.008 0.02 0.0001 The reaction time is 28 seconds Calculate k in the rate law: Also: Rate = k [ I-] [ BrO3 -] [H+] A clock reaction is run at 19 ºC with the following initial concentrations [I-] [BrO3-] [H+] [S2O32-] 0.002 0.008 0.02 0.0001 Then...
Determine the rate law for the reaction A+ B → C given the following initial rate data.
Determine the rate law for the reaction A+ B → C given the following initial rate data. [A], M [ B], M ∆[C]/∆t (mol/L•s) 0.10 0.20 40. 0.20 0.20 80. 0.10 0.10 40.
Chemical kinetics For the reaction 2A + B → C + D + 2E, data for...
Chemical kinetics For the reaction 2A + B → C + D + 2E, data for a run with [A]0 = 800 mmol/L and [B]0 = 2.00 mmol/L are t/ks 8 14 20 30 50 90 [B]/[B]0 0.836 .745 .680 .582 .452 .318 and data for a run with [A]0 = 600 mmol/L and [B]0 = 2.00 mmol/L are t/ks 8 20 50 90 [B]/[B]0 0.901 0.787 0.598 0.453 Find the order with respect to each reactant (A and B)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT