Question

In: Chemistry

The rate law for the reaction below is given by Rate = k(P ). At 680°C,...

The rate law for the reaction below is given by Rate = k(P ). At 680°C, the half-life is 35.0 s. Given initial pressures of P = 0.67 atm, P = 0.75 atm, and P = 0.25 atm, how many seconds will it take for the pressure of PH to drop to 0.50 atm

4 PH (g) → P (g) + 6 H (g)

Solutions

Expert Solution

Solution :-

Reaction is first order with P

So the

Rate constant K = 0.693 / t1/2

                             = 0.693 / 35.0 s

                           = 0.0198 s-1

Now lets calculate the time needed to decrease the pressure from 0.67 to 0.50 atm

Ln[P2]/[P1] = - k*t

Ln [0.50 ]/[0.67] = -0.0198 s-1 *t

-0.29267 = -0.0198 s-1 * t

-0.29267 / -0.0198 s-1 = t

14.8 s = t

So the time needed is 14.8 sec

Now lets calculate the time needed to decrease the pressure from 0.75 to 0.50 atm

Ln[P2]/[P1] = - k*t

Ln [0.50 ]/[0.75] = -0.0198 s-1 *t

-0.40547 = -0.0198 s-1 * t

-0.40547 / -0.0198 s-1 = t

20.5 s = t

So the time needed is 20.5 sec


Related Solutions

1. The rate law for a given reaction is rate = k[NOBr]2. The rate constant is...
1. The rate law for a given reaction is rate = k[NOBr]2. The rate constant is 1.0 x 10-5 1/M∙s, and the initial concentration was 0.100 M. What is the first half-life of this reaction? A) 0.50 s B) 6.9 x 104 s C) 1.0 x 10-5 s D) 1.0 x 106 s E) None of these 2. The reaction SO2Cl2 SO2 + Cl2 is first order in SO2Cl2. If the concentration of SO2Cl2 after 198 s is 1.47 x...
If the observed rate law for a reaction is: rate = k(NO)(O3), the reaction is A....
If the observed rate law for a reaction is: rate = k(NO)(O3), the reaction is A. first-order overall B. first-order in O3 C. third-order overall D. second-order in NO
The reaction 2A + B → C obeys the rate law –rB = kCB2, where k...
The reaction 2A + B → C obeys the rate law –rB = kCB2, where k = 0.25 L/mol.s at 75˚C. A is available as a 1.5 M solution and B as a 1 M solution. a) A 26 L/s stream of solution A and 30 L/s stream of solution B are combined just before being introduced into a CSTR. If a 150 L reactor is available, how many mole/h of C could be produced? b) You receive some financing...
If the rate law for the clock reaction is: Rate = k [ I-] [ BrO3...
If the rate law for the clock reaction is: Rate = k [ I-] [ BrO3 -] [H+] A clock reaction is run with the following initial concentrations: [I-] [BrO3-] [H+] [S2O32-] 0.002 0.008 0.02 0.0001 The reaction time is 28 seconds Calculate k in the rate law: Also: Rate = k [ I-] [ BrO3 -] [H+] A clock reaction is run at 19 ºC with the following initial concentrations [I-] [BrO3-] [H+] [S2O32-] 0.002 0.008 0.02 0.0001 Then...
Determine the rate law for the reaction A+ B → C given the following initial rate data.
Determine the rate law for the reaction A+ B → C given the following initial rate data. [A], M [ B], M ∆[C]/∆t (mol/L•s) 0.10 0.20 40. 0.20 0.20 80. 0.10 0.10 40.
1. Assume that the rate law for a reaction is rate = k[A][B]^2 a) what is...
1. Assume that the rate law for a reaction is rate = k[A][B]^2 a) what is the overall order of the reaction? b) if the concentration of both A and B are doubled, how will this affect the rate of the reaction? c) how will doubling the concentration of A, while the concentration of B is kept constant, affect the value of k (assume that temperature does not change)? how is the rate affected? 2. It is found for the...
For a reaction A +B → C, the experimental rate law is found to be R=k[A]1[B]1/2. Find the rate of the reaction when [A] = 0.5 M, [B] = 0.1 M and k=0.03
For a reaction A +B → C, the experimental rate law is found to be R=k[A]1[B]1/2. Find the rate of the reaction when [A] = 0.5 M, [B] = 0.1 M and k=0.03.
Using the data listed below, determine the rate law and the rate constant for this reaction...
Using the data listed below, determine the rate law and the rate constant for this reaction at 60°C with respect to hypochlorite decomposition. t (min) [ClO-] (M) 0 0.950 60 0.941 120 0.932 240 0.915 360 0.898 480 0.882 720 0.851 1080 0.809 1440 0.771 1800 0.736 2160 0.705 2520 0.676 2880 0.649 3600 0.601 4320 0.560 5040 0.524 5760 0.493 6480 0.465 7200 0.440
difference between the rate of a reaction, the reaction rate, and the rate law
Can you explain  the difference between the rate of a reaction, the reaction rate, and the rate law? Also is there a difference between average rate of concentration change and instantaneous rate of concentration change, and how do they relate to the rate law? Please explain!
The reaction below has an equilibrium constant K p =2.2× 10 6 at 298 K. 2...
The reaction below has an equilibrium constant K p =2.2× 10 6 at 298 K. 2 COF 2 (g)⇌ CO 2 (g)+ CF 4 (g) Part A Calculate K p for the reaction below. COF 2 (g)⇌ 1 2 CO 2 (g)+ 1 2 CF 4 (g) Part B Calculate K p for the reaction below. 2 3 COF 2 (g)⇌ 1 3 CO 2 (g)+ 1 3 CF 4 (g) Part C Calculate K p for the reaction below....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT