Question

In: Physics

A parallel-plate capacitor has capacitance C0 = 7.80 pF when there is air between the plates....

A parallel-plate capacitor has capacitance C0 = 7.80 pF when there is air between the plates. The separation between the plates is 1.80 mm.

1- What is the maximum magnitude of charge that can be placed on each plate if the electric field in the region between the plates is not to exceed 3.00×104 V/mV/m?

Express your answer with the appropriate units.

2- A dielectric with KKK = 2.40 is inserted between the plates of the capacitor, completely filling the volume between the plates. Now what is the maximum magnitude of charge on each plate if the electric field between the plates is not to exceed 3.00×104 V/mV/m?

Express your answer with the appropriate units.

Solutions

Expert Solution

comments - 1) the change on each plate of the parallel plate capacitor when filled with air was found to be 0.42nC.

2) the change on each plate of the parallel plate capacitor when filled with dielectric is found to be 1.01nC.


Related Solutions

A parallel-plate capacitor has capacitance C = 15.7 pF when the volume between the plates is...
A parallel-plate capacitor has capacitance C = 15.7 pF when the volume between the plates is filled with air. The plates are circular, with radius 2.50 cm. The capacitor is connected to a battery and a charge of magnitude 28.0 pC goes into each plate. With the capacitor still connected to the battery, a slab of dielectric is inserted between the plates, completely filling the space between the plates. After the dielectric has been inserted, the charge on each plate...
A parallel-plate air-filled capacitor has a capacitance of 335 pF. If each of its plates has...
A parallel-plate air-filled capacitor has a capacitance of 335 pF. If each of its plates has an area of 0.025 m2, what is the separation? If the region between the plates is now filled with germanium, what is the capacitance?
S-16) a) Design a parallel plate capacitor with a capacitance of 5 pF with vacuum between...
S-16) a) Design a parallel plate capacitor with a capacitance of 5 pF with vacuum between the plates. b) What will change if a dielectric is placed between the plates with dielectric constant of 2. Alternate problem 16 (your choice, do the above capacitor problem or the resistor problem below) S-16r) a) Given that the resistivity of carbon in graphite form is 5 x 10-5 Ω*m, design a 10 Ω resister. Hint: choose a cylindrical shape and specify the length...
An air-filled parallel-plate capacitor has a capacitance of 2.0 F when the plate spacing is 1.6...
An air-filled parallel-plate capacitor has a capacitance of 2.0 F when the plate spacing is 1.6 mm. (a) What is the area of the plates? (b) What is the maximum voltage Vmax that can be applied to this capacitor (before dielectric breakdown occurs)? (c) How much charge is stored on the capacitor when Vmax is across it? (d) How much energy is stored on the capacitor when Vmax is across it? (e) A piece of Plexiglas (with a dielectric constant...
A parallel plate air capacitor with no dielectric between the plates is connected to a constant...
A parallel plate air capacitor with no dielectric between the plates is connected to a constant voltage source. How would the capacitance and the charge change if a dielectric of dielectric constant K=2 is inserted between the plates. C0 and Q0 are the capacitance and charge of the capacitor before the introduction of the dielectric.
A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a...
A parallel-plate capacitor with circular plates and a capacitance of 10.3 μF is connected to a battery which provides a voltage of 11.2 V . What is the charge on each plate? How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery? How much charge would be on the plates if the capacitor were connected to the battery after the radius of each plate was doubled without changing their...
A 1.2 nF parallel-plate capacitor has an air gap between its plates. Its capacitance increases by 3.0 nF when the gap is filled by dielectric.
A 1.2 nF parallel-plate capacitor has an air gap between its plates. Its capacitance increases by 3.0 nF when the gap is filled by dielectric. What is the dielectric constant of that dielectric?
An air-filled parallel plate capacitor has a capacitance of 4.40 μF. The plate spacing is now...
An air-filled parallel plate capacitor has a capacitance of 4.40 μF. The plate spacing is now doubled and a dielectric is inserted, completely filling the space between the plates. As a result, the capacitance becomes 16.2 μF. a. Calculate the dielectric constant of the inserted material. b. If the original capacitor was charged to a potential difference of 6.0 V and the battery was disconnected when the modifications to the capacitor was made, by what factor did the energy stored...
The plates of an isolated parallel plate capacitor with a capacitance C carry a charge Q....
The plates of an isolated parallel plate capacitor with a capacitance C carry a charge Q. The plate separation is d. Initially, the space between the plates contains only air. Then, an isolated metal sheet of thickness 0.5d is inserted between, but not touching, the plates. How does the potential difference between the plates change as a result of inserting the metal sheet? 2. A research Van de Graaff generator has a 2.00-m-diameter metal sphere with a charge of 5.00...
A parallel-plate capacitor has 2.18 cm2 plates that are separated by 5.69 mm with air between...
A parallel-plate capacitor has 2.18 cm2 plates that are separated by 5.69 mm with air between them. If a 18.0 V battery is connected to this capacitor, how much energy does it store?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT