Question

In: Mechanical Engineering

Consider an ideal Brayton cycle with reheat (air standard). The pressure and temperature of the air...

Consider an ideal Brayton cycle with reheat (air standard). The pressure and temperature of the air at the inlet of the gas turbine is 1200 kPa and 1000 K respectively. Assume the gas expands to 100 kPa in two stages. Between the stages, the air is reheated at a constant pressure of 350 kPa to 1000 K. Assume a fully isentropic process in the turbines.

Find:

(a) the work produced at each stage, in kJ/kg of air flowing.

(b) the heat transfer for the reheat process, in kJ/kg of air flowing.

(c) the increase in net work as compared to a single stage of expansion with no reheat.

Solutions

Expert Solution


Related Solutions

a simple ideal Brayton cycle with air as the working fluid has a pressure ratio of...
a simple ideal Brayton cycle with air as the working fluid has a pressure ratio of 10. The air enters the compressor at 520 R and the turbine at 2000 R. Accounting for the variation of specific heats with temperature, determine (a) the ait temperature at the compressor exit, (b) the back work ratio, and (c) the thermal efficiency.
Air enters the compressor of an ideal air standard Brayton cycle at 100 kPa and 290...
Air enters the compressor of an ideal air standard Brayton cycle at 100 kPa and 290 K with a mass flow rate (m⋅) of 6 kg/s. The compressor pressure ratio is 10. The turbine inlet temperature is 1500 K. If a regenerator with an effectiveness of 70% is incorporated in the cycle, determine (a) the thermal efficiency (ηth,Brayton) of the cycle. Use the PG model for air. (b) What-if Scenario: What would the thermal efficiency be if the regenerator effectiveness...
Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with...
Air enters the compressor of an ideal air-standard Brayton cycle at 100 kPa, 300 K, with a volumetric flow rate of 5 m3/s. The turbine inlet temperature is 1800 K. For a compressor pressure ratio of 9, determine: (a) the percent thermal efficiency of the cycle. (b) the back work ratio. (c) the net power developed, in kW.
Air enters the compressor of an ideal cold air-standard Brayton cycle at 100 kPa, 300 K,...
Air enters the compressor of an ideal cold air-standard Brayton cycle at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The compressor pressure ratio is 10, and the turbine inlet temperature is 1400 K. For k = 1.4 and Cp = 1.005 kJ/kg, calculate: (a) the percent thermal efficiency of the cycle. (b) the back work ratio. (c) the net power developed, in kW
In an ideal standard dual cycle, the pressure and temperature at the beginning of compression are...
In an ideal standard dual cycle, the pressure and temperature at the beginning of compression are 1 bar and 47°C, respectively. The heat supplied in the cycle is 1250kJ/kg, two third of this heat is being added at constant volume and the remaining heat is added at constant pressure. If the compression ratio is 16, determine i. the maximum temperature in cycle ii. thermal efficiency of the cycle iii. the mean effective pressure
Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure...
Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at PH MPa and TH °C and is condensed in the condenser at a pressure of PL kPa. Assume the steam is reheated to the inlet temperature of the high-pressure turbine, and that pump work is NOT negligible. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed w% percent, determine: (a) the pressure at...
7.4 A complex Brayton-cycle power plant using intercooling, reheat, and regeneration is analyzed using the air...
7.4 A complex Brayton-cycle power plant using intercooling, reheat, and regeneration is analyzed using the air standard method. Air is compressed from State 1 to State 2 using a compressor with a pressure ratio of RP1. An intercooler is used to cool the air to State 3 before entering a second compressor with a pressure ratio of RP2. The compressed air exits at State 4 and is preheated in a regenerator that uses the exhaust air from the low-pressure turbine....
The pressure ratio of a Brayton cycle with air operated regenerator is 8. The lowest and...
The pressure ratio of a Brayton cycle with air operated regenerator is 8. The lowest and highest temperatures of the cycle are 310 K and 1150 K. The adiabatic efficiency of the compressor and turbine is 75% and 82%, respectively, and the efficiency of the regenerator is 65%. Show the cycle in the T-s diagram. Consider the variation of specific temperatures with temperature. a) Calculate the temperature of the air at the turbine outlet, b) Net work of the cycle,...
Air enters the compressor of an ideal Brayton refrigeration cycle at 140 kPa, 270K and is...
Air enters the compressor of an ideal Brayton refrigeration cycle at 140 kPa, 270K and is compressed to 420 kPa. At the turbine inlet, the temperature is 320K and the volumetric flow rate is 0.4 m3/s. Determine (i) the mass flow rate, in kg/s; (ii) the net power input, in kW; (iii) the refrigerating capacity, in kW; and (iv) the coefficient of performance.
The pressure ratio of a power plant operating according to the ideal brayton cycle is 8....
The pressure ratio of a power plant operating according to the ideal brayton cycle is 8. Gas temperature 300K at compressor inlet, at the entrance of the turbine is 1300K. Using air standard acceptance and taking into account the change of specific temperatures with temperature, a.) Calculate the temperature of the gas at the compressor and turbine outlet. b.) Calculate the thermal efficiency of the cycle. c.) Calculate the backward work rate.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT