In: Math
The following data are from a completely randomized design.
Treatment | |||
A | B | C | |
163 | 142 | 126 | |
142 | 158 | 121 | |
168 | 129 | 138 | |
145 | 142 | 143 | |
147 | 133 | 153 | |
189 | 148 | 123 | |
Sample mean | 159 | 142 | 134 |
Sample variance | 325.2 | 108.4 | 162.4 |
Source of Variation | Sum of Squares | Degrees of Freedom | Mean Square | F | p-value |
Treatments | |||||
Error | |||||
Total |
a)
A | B | C | ||||
count, ni = | 6 | 6 | 6 | |||
mean , x̅ i = | 159.000 | 142.00 | 134.00 | |||
std. dev., si = | 18.033 | 10.412 | 12.744 | |||
sample variances, si^2 = | 325.200 | 108.400 | 162.400 | |||
total sum | 954 | 852 | 804 | 2610 | (grand sum) | |
grand mean , x̅̅ = | Σni*x̅i/Σni = | 145.00 | ||||
square of deviation of sample mean from grand mean,( x̅ - x̅̅)² | 196.000 | 9.000 | 121.000 | |||
TOTAL | ||||||
SS(between)= SSB = Σn( x̅ - x̅̅)² = | 1176.000 | 54.000 | 726.000 | 1956 | ||
SS(within ) = SSW = Σ(n-1)s² = | 1626.000 | 542.000 | 812.000 | 2980.0000 |
sum of squares between treatments = 1956
b)
no. of treatment , k = 3
df between = k-1 = 2
N = Σn = 18
df within = N-k = 15
mean square between treatments , = SSB/k-1 = 1956/2 = 978
c)
sum of squares due to error=2980
d)
mean square due to error MSE = SSE/N-k = 2980/15 = 198.7
e)
SS | df | MS | F | p-value | |
Treatments | 1956 | 2 | 978.0 | 4.92 | 0.0227 |
Error | 2980 | 15 | 198.7 | ||
Total: | 4936 | 17 |