Question

In: Statistics and Probability

The following data are from a completely randomized design. Treatment A B C 163 141 126...

The following data are from a completely randomized design.

Treatment
A B C
163 141 126
143 157 123
165 124 139
144 142 141
148 135 151
173 153 124
Sample
mean
156 142 134
Sample
variance
159.2 144.0 129.6

(a)

Compute the sum of squares between treatments.

(b)

Compute the mean square between treatments.

(c)

Compute the sum of squares due to error.

(d)

Compute the mean square due to error. (Round your answer to two decimal places.)

(e)

Set up the ANOVA table for this problem. (Round your values for MSE and F to two decimal places, and your p-value to four decimal places.)

Source
of Variation
Sum
of Squares
Degrees
of Freedom
Mean
Square
F p-value
Treatments
Error
Total

(f)

At the α = 0.05 level of significance, test whether the means for the three treatments are equal.

State the null and alternative hypotheses.

H0: μAμBμC
Ha: μA = μB = μCH0: μA = μB = μC
Ha: μAμBμC    H0: At least two of the population means are equal.
Ha: At least two of the population means are different.H0: Not all the population means are equal.
Ha: μA = μB = μCH0: μA = μB = μC
Ha: Not all the population means are equal.

Find the value of the test statistic. (Round your answer to two decimal places.)

Find the p-value. (Round your answer to four decimal places.)

p-value =

State your conclusion.

Reject H0. There is sufficient evidence to conclude that the means for the three treatments are not equal.Do not reject H0. There is not sufficient evidence to conclude that the means for the three treatments are not equal.    Do not reject H0. There is sufficient evidence to conclude that the means for the three treatments are not equal.Reject H0. There is not sufficient evidence to conclude that the means for the three treatments are not equal.

Solutions

Expert Solution

Please do the comment for any doubt or clarification. Please upvote if this helps you out. Thank You!

(a)

Compute the sum of squares between treatments. 1488

(b)

Compute the mean square between treatments. 744

(c)

Compute the sum of squares due to error. 2164

(d)

Compute the mean square due to error. 144.27 (Round your answer to two decimal places.)

(e)

Set up the ANOVA table for this problem. (Round your values for MSE and F to two decimal places, and your p-value to four decimal places.)

Source SS    df MS F    p-value
Treatment 1,488 2 744.00 5.16 .0197
Error 2,164 15 144.27
Total 3,652 17

f)

Ha: μA = μB = μCH0: μA = μB = μC
Ha: Not all the population means are equal.

Find the value of the test statistic. (Round your answer to two decimal places.) 5.16

Find the p-value. (Round your answer to four decimal places.)

p-value =0.0197

State your conclusion.

Reject H0. There is sufficient evidence to conclude that the means for the three treatments are not equal


Related Solutions

The following data are from a completely randomized design. Treatment A B C 163 141 127...
The following data are from a completely randomized design. Treatment A B C 163 141 127 142 156 122 166 125 137 145 142 141 149 137 151 165 145 120 Sample mean 155 141 133 Sample variance 118.0 102.8 146.0 (a) Compute the sum of squares between treatments. (b) Compute the mean square between treatments. (c) Compute the sum of squares due to error. (d) Compute the mean square due to error. (Round your answer to two decimal places.)...
The following data are from a completely randomized design. Treatment A B C 163 142 126...
The following data are from a completely randomized design. Treatment A B C 163 142 126 142 158 121 168 129 138 145 142 143 147 133 153 189 148 123 Sample mean 159 142 134 Sample variance 325.2 108.4 162.4 Compute the sum of squares between treatments. Round the intermediate calculations to whole number.    Compute the mean square between treatments.    Compute the sum of squares due to error.    Compute the mean square due to error (to...
The following data are from a completely randomized design. Treatment A B C 163 142 125...
The following data are from a completely randomized design. Treatment A B C 163 142 125 143 156 121 165 124 138 144 143 139 147 136 149 168 151 138 Sample mean 155 142 135 Sample variance 132.4 127.6 105.2 (a) Compute the sum of squares between treatments. (b) Compute the mean square between treatments. (c) Compute the sum of squares due to error. (d) Compute the mean square due to error. (Round your answer to two decimal places.)...
The following data are from a completely randomized design. Treatment A B C 163 145 123...
The following data are from a completely randomized design. Treatment A B C 163 145 123 142 157 121 166 129 137 145 145 141 149 132 154 189 144 128 Sample mean 159 142 134 Sample variance 310 103.2 156.8 a. Compute the sum of squares between treatments. b. Compute the mean square between treatments. c. Compute the sum of squares due to error. d. Compute the mean square due to error (to 1 decimal). e. Set up the...
The following data are from a completely randomized design. Treatment Treatment Treatment A B C 32...
The following data are from a completely randomized design. Treatment Treatment Treatment A B C 32 44 34 30 43 37 30 44 36 26 46 37 32 48 41 Sample mean 30 45 37 Sample variance 6 4 6.5 At the = .05 level of significance, can we reject the null hypothesis that the means of the three treatments are equal? Compute the values below (to 1 decimal, if necessary). Sum of Squares, Treatment Sum of Squares, Error Mean...
The following data are from a completely randomized design. Treatment Treatment Treatment A B C 32...
The following data are from a completely randomized design. Treatment Treatment Treatment A B C 32 44 34 30 43 37 30 44 36 26 46 37 32 48 41 Sample mean 30 45 37 Sample variance 6 4 6.5 a. At the level of significance, can we reject the null hypothesis that the means of the three treatments are equal? Compute the values below (to 1 decimal, if necessary). Sum of Squares, Treatment Sum of Squares, Error Mean Squares,...
The following data are from a completely randomized design. Treatment Treatment Treatment A B C 32...
The following data are from a completely randomized design. Treatment Treatment Treatment A B C 32 45 35 30 44 38 30 45 37 26 47 38 32 49 42 Sample mean 30 46 38 Sample variance 6 4 6.5 A) At the  = .05 level of significance, can we reject the null hypothesis that the means of the three treatments are equal? Compute the values below (to 1 decimal, if necessary). Sum of Squares, Treatment Sum of Squares, Error Mean...
The following data are from a completely randomized design. Treatment Observation A B C 1 162...
The following data are from a completely randomized design. Treatment Observation A B C 1 162 142 126 2 142 156 122 3 165 124 138 4 145 142 140 5 148 136 150 6 174 152 128 Sample Mean 156 142 134 Sample Variance 164.4 131.2 110.4 Compute the sum of squares between treatments. Compute the mean square between treatment Compute the sum of squares due to error. Compute the mean square due to error. Set up the ANOVA...
The following data are from a completely randomized design.
You may need to use the appropriate technology to answer this question. The following data are from a completely randomized design. Treatment A B C 162 142 126 142 157 123 166 123 138 144 142 140 148 137 150 168 157 127 Sample mean 155 143 134 Sample variance 135.6 166.0 108.4 (a) Compute the sum of squares between treatments. (b) Compute the mean square between treatments. (c) Compute the sum of squares due to error. (d) Compute the...
The following data are from a completely randomized design. In the following calculations, use α =...
The following data are from a completely randomized design. In the following calculations, use α = 0.05 (level of significance) Treatment 1 Treatment 2 Treatment 3 63 82 69 47 72 54 54 88 61 40 66 48 sample mean 51 77 58 sample variance 96.67 97.34 81.99 a. Use analysis of variance to test for a significant difference among the means of the three treatments. b. Use Fisher’s LSD procedure to determine which means are different.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT