Question

In: Other

A 2-shell passes and 4-tube passes heat exchanger is used to heat process stream from 35°C...

A 2-shell passes and 4-tube passes heat exchanger is used to heat process stream from 35°C to 80°C by hot water available at 90°C, which enters the thin-walled 2.5-cm-diameter tube with total length of 65 m. The convection heat transfer coefficient is 76 W/m2 .°C on the process stream (shell) side and 190 W/m2 .°C on the water (tube) side. For a desired factor, FT = 0.95

a) Determine the rate of heat transfer in the heat exchanger.

b) Consider a fouling factor of 0.0012 m2 ·°C/W at the inner and outer surfaces of tube, determine the new rate of heat transfer

c) Evaluate the mass flow of hot water needed to compensate the heat loss due to fouling. Assume cp of hot water is 4.2 J/g.°C.

d) If the existing operating conditions are to be remained unchanged, evaluate the new area to compensate the heat loss due to fouling.

Solutions

Expert Solution

I will update remain solution.. please wait a moment.


Related Solutions

A shell-and-tube heat exchanger with two tube passes and baffled single shell pass is used as...
A shell-and-tube heat exchanger with two tube passes and baffled single shell pass is used as oil cooler. Cooling water at 20°C flows through the tubes at a flow rate of 4.082 kg/s. Engine oil enters the shell side at a flow rate of 10 kg/s. The inlet and outlet temperatures of oil are 90°C and 60°C, respectively. The overall heat transfer coefficient based on the outside tube area (Uo) is 262 W/m2⋅K. The specific heats of water and oil...
A shell and tube type of heat exchanger with one shell pass and two tube passes...
A shell and tube type of heat exchanger with one shell pass and two tube passes will be designed to provide the given heat transfer rate Q(kW) to cool hot water by using cold river water . The hot water flows through the shell and the cold water flows through the tubes. The inlet and outlet temperatures of the hot water and the cold water are given as Thi, The and Tci, Tce in degrees Celcius. Design the shell and...
A shell and tube type of heat exchanger with one shell pass and two tube passes...
A shell and tube type of heat exchanger with one shell pass and two tube passes will be designed to provide the given heat transfer rate Q(kW) to cool hot water by using cold river water . The hot water flows through the shell and the cold water flows through the tubes. The inlet and outlet temperatures of the hot water and the cold water are given as Thi, The and Tci, Tce in degrees Celcius. Design the shell and...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30 deg C to 40 deg C at a mass flow rate of 4 kg/s. The fluid used for heating (shell side) is water entering at 90 deg C with a mass flow rate of 2 kg/s. A 1-2 STHE is used and the overall heat transfer coefficient based on the inside area is 1390 W/m2-K. The tubes are 1.875 in diameter (inside) and require...
a shell and tube heat exchanger with four shells passes and eight tube passes uses 3kg/s...
a shell and tube heat exchanger with four shells passes and eight tube passes uses 3kg/s of ethylene glycol in the shell to heat 1.5kg/s of water from 20 to 50 C.The glycol enters at 80c , and the overall heat transfer coefficient is 900W/m2C.Determine the area of the heat exchanger? please slove it step by step .
A shell-and-tube heat exchanger heats oil from 2°C to 35°C using hot water. The oil flows...
A shell-and-tube heat exchanger heats oil from 2°C to 35°C using hot water. The oil flows in the shell in a single pass. Water flows in 5 copper tubes with a total (all tubes) rate of 0.5 kg/s. Each tube makes 4 passes through the shell and the length per pass is 4 m. The tube inner and outer diameters are 15 mm and 19 mm. The water enters at 95°C and leaves at 29°C. 1. Estimate the average convection...
liquid oil is used in the tube side of a shell-and-tube heat exchanger with two shell...
liquid oil is used in the tube side of a shell-and-tube heat exchanger with two shell passes and four tube passes. water is heated in the shell side from 10°C to 50°C while the oil is cooled from 90°C to 60°C. the overall heat transfer coefficient is 53 W/m^2*K. the specific heat of the oil is 2.0 kJ/kg*K. Using the NTU - effectiveness method, calculate the area of the heat exchanger for a total energy transfer of 500 kW. what...
What is the process occurring inside the Shell and Tube Heat Exchanger and what is the...
What is the process occurring inside the Shell and Tube Heat Exchanger and what is the driving force?
An oil cooler is in the form of a single shell 4 tube heat exchanger in...
An oil cooler is in the form of a single shell 4 tube heat exchanger in which oil passes through the tubes and cool water passes through the shell. Water comes in at 15C and leaves at 25C and has a mass flow rate of 20 kg/min. Oil enters at 35C with a mass flow rate of 30 kg/min. Cp of oil is 2.13 kJ/KgC and that of water is 4.18 kJ/kgC. If the surface area of the heat exchanger...
A chemical process stream enters a shell-and-tube exchanger at a temperature of 200 °F and does...
A chemical process stream enters a shell-and-tube exchanger at a temperature of 200 °F and does two passes on the shell side, exiting the exchanger at 170 °F. For this particulate scenario, the heat exchanger has 200 stainless steel tubes that are 2-in. OD and 10 ft long. Indicate whether the temperature of the process stream will increase, decrease, or remain the same under the following scenarios. Justify your answer. a) The flow rate of the cooling fluid is increased....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT