Question

In: Other

a shell and tube heat exchanger with four shells passes and eight tube passes uses 3kg/s...

a shell and tube heat exchanger with four shells passes and eight tube passes uses 3kg/s of ethylene glycol in the shell to heat 1.5kg/s of water from 20 to 50 C.The glycol enters at 80c , and the overall heat transfer coefficient is 900W/m2C.Determine the area of the heat exchanger?

please slove it step by step .

Solutions

Expert Solution

Step 1: Calculation of rate of Heat transfer

Since all of the tube side data is available we will calculate the rate of heat transfer using this

Q = m*Cp*dT = 1.5*4.18*(50-20) = 188.1 KW = 188100 W

Step 2: Calculation of overall heat transfer coefficient

The overall heat transfer coefficeint is already given in the question

U = 900 W/m2oC

Step 3: Calculation of Log mean temperature difference

We first need to find the outlet let temperature of glycol, for this we will make use of enthalpy balance

(m*Cp*dT)glycol = (m*Cp*dT)water

3*0.9*(80-T) =1.5*4.18*(50-20)

From above equation, The outlet temperature of glycol is 10.34 oC

Step 4: Calculation of Ft

Now as per data provided we hae 4 shell passes and 8 tube passes

From above equation and all the 4 temperatures ( 80,10.34,20,50)

Ft = 0.95

Step 5: Calculation of Area required for heat transfer

Q = U*A*FT*LMTD

188100 =  900 *A*0.95*17.95

A = 12.256 m2


Related Solutions

A shell and tube type of heat exchanger with one shell pass and two tube passes...
A shell and tube type of heat exchanger with one shell pass and two tube passes will be designed to provide the given heat transfer rate Q(kW) to cool hot water by using cold river water . The hot water flows through the shell and the cold water flows through the tubes. The inlet and outlet temperatures of the hot water and the cold water are given as Thi, The and Tci, Tce in degrees Celcius. Design the shell and...
A shell and tube type of heat exchanger with one shell pass and two tube passes...
A shell and tube type of heat exchanger with one shell pass and two tube passes will be designed to provide the given heat transfer rate Q(kW) to cool hot water by using cold river water . The hot water flows through the shell and the cold water flows through the tubes. The inlet and outlet temperatures of the hot water and the cold water are given as Thi, The and Tci, Tce in degrees Celcius. Design the shell and...
A shell-and-tube heat exchanger with two tube passes and baffled single shell pass is used as...
A shell-and-tube heat exchanger with two tube passes and baffled single shell pass is used as oil cooler. Cooling water at 20°C flows through the tubes at a flow rate of 4.082 kg/s. Engine oil enters the shell side at a flow rate of 10 kg/s. The inlet and outlet temperatures of oil are 90°C and 60°C, respectively. The overall heat transfer coefficient based on the outside tube area (Uo) is 262 W/m2⋅K. The specific heats of water and oil...
A 2-shell passes and 4-tube passes heat exchanger is used to heat process stream from 35°C...
A 2-shell passes and 4-tube passes heat exchanger is used to heat process stream from 35°C to 80°C by hot water available at 90°C, which enters the thin-walled 2.5-cm-diameter tube with total length of 65 m. The convection heat transfer coefficient is 76 W/m2 .°C on the process stream (shell) side and 190 W/m2 .°C on the water (tube) side. For a desired factor, FT = 0.95 a) Determine the rate of heat transfer in the heat exchanger. b) Consider...
liquid oil is used in the tube side of a shell-and-tube heat exchanger with two shell...
liquid oil is used in the tube side of a shell-and-tube heat exchanger with two shell passes and four tube passes. water is heated in the shell side from 10°C to 50°C while the oil is cooled from 90°C to 60°C. the overall heat transfer coefficient is 53 W/m^2*K. the specific heat of the oil is 2.0 kJ/kg*K. Using the NTU - effectiveness method, calculate the area of the heat exchanger for a total energy transfer of 500 kW. what...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30...
A shell-and-tube heat exchanger is to used to heat water (in the tube side) from 30 deg C to 40 deg C at a mass flow rate of 4 kg/s. The fluid used for heating (shell side) is water entering at 90 deg C with a mass flow rate of 2 kg/s. A 1-2 STHE is used and the overall heat transfer coefficient based on the inside area is 1390 W/m2-K. The tubes are 1.875 in diameter (inside) and require...
A shell and tube heat exchanger is to be desined by kern's method to heat Toluene....
A shell and tube heat exchanger is to be desined by kern's method to heat Toluene. Toulene: T(in)=100F, T(out)=257F, flowrate=125000Ib/hr P(in)=90Psia composition:100% Toluene. Styrene: T(in)=300F, T(out)=176F, P(in)=50psia composition:100% Styrene What is the mass flow rate of Styrene? Which fluid should be in the shell side and which should be in the tube side and why?
The condenser of a thermoelectric plant is a shell and tube heat exchanger consisting of a...
The condenser of a thermoelectric plant is a shell and tube heat exchanger consisting of a shell and 30,000 tubes, each of which executes two steps. The tubes are thin- walled with D = 25 mm, and the steam condenses on its outer surface with a convection coefficient of ho = 11 kW/m2 K. The heat transfer that the exchanger must perform is 2,000 MW, and this is carried out by passing cooling water through the pipes at the rate...
A shell-and-tube heat exchanger uses cooling water in the tubes. There are two pressure gages installed...
A shell-and-tube heat exchanger uses cooling water in the tubes. There are two pressure gages installed on the the water side to the heat exchanger. Gage 1 (P1) is installed on the inlet water line, which is connected to the lower nozzle, while Gage (P2) is installed on the discharge water line, which is connected to the upper nozzle. Both pressure gages are very near the nozzle flanges. The pressure drop from each pressure gage to the exchanger channel is...
An oil cooler is in the form of a single shell 4 tube heat exchanger in...
An oil cooler is in the form of a single shell 4 tube heat exchanger in which oil passes through the tubes and cool water passes through the shell. Water comes in at 15C and leaves at 25C and has a mass flow rate of 20 kg/min. Oil enters at 35C with a mass flow rate of 30 kg/min. Cp of oil is 2.13 kJ/KgC and that of water is 4.18 kJ/kgC. If the surface area of the heat exchanger...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT