In: Chemistry
11. Consider a Carnot cycle with 2.25 moles of a diatomic ideal gas as the working substance (assume Cv = 2.5*R). The following are the steps of the cycle:
Step I: reversible, isothermal expansion at 300.0 °C from 10.00 L to 16.00 L.
Step II: reversible, a diabatic expansion until the temperature decreases to 50.0 °C.
Step III: reversible, isothermal compression at 50.0 °C.
Step IV: reversible, adiabatic compression back to the initial conditions.
A. Calculate q, w, ΔU, ΔH, and ΔS for each step and for the overall cycle; make a table of results.
B. Construct a computer-generated P-V plot of the cycle, labeling each step.
Part A.
Step I:
-w = nRT ln(V2/V1)
= 2.25 mol * 8.3145 J mol-1 K-1 * (300+273.15) K * ln(16 L/10 L)
= 5.04 KJ
i.e. w = -5.04 KJ
q = +5.04 KJ
i.e. TS = 5.04 KJ
i.e. S = 5.04 KJ/573.15 K = 8.79 J K-1
Now, H = -w = +5.04 KJ
Step II:
w = U = {nR/(-1)} * T
= {2.25 mol * 8.3145 J mol-1 K-1 /(1.4-1)} * (50 - 300) K
i.e. w = -11.69 KJ
q = 0 KJ
i.e. TS = 0
i.e. S = 0 KJ
Now, q = U + (-w) = H = 0 KJ
Step III:
-w = nRT ln(V2/V1)
= 2.25 mol * 8.3145 J mol-1 K-1 * (50+273.15) K * ln(10 L/16 L)
= -2.84 KJ
i.e. w = +2.84 KJ
q = -2.84 KJ
i.e. TS = -2.84 KJ
i.e. S = -2.84 KJ/323.15 K = -8.79 J K-1
Now, H = -w = -2.84 KJ
Step IV:
w = U = {nR/(-1)} * T
= {2.25 mol * 8.3145 J mol-1 K-1 /(1.4-1)} * (300 - 50) K
i.e. w = 11.69 KJ
q = 0 KJ
i.e. TS = 0
i.e. S = 0 KJ
Now, q = U + (-w) = H = 0 KJ
Part B.
I.E = isothermal expansion
A.E = Adiabatic expansion
I.C = Isothermal compression
A.C = Adiabatic compression
T1 = 300 oC, T2 = 50 oC
V1/V2 = V4/V3