Question

In: Physics

Consider a sample containing 2.00 mol of an ideal diatomic gas. Assuming the molecules rotate but...

Consider a sample containing 2.00 mol of an ideal diatomic gas. Assuming the molecules rotate but do not vibrate, find a) the total heat capacity of the sample at constant volume and b) the total heat capacity at constant pressure. C and d) repeat parts a) and b) assuming the molecules both rotate and vibrate. EXPLAIN how you got these answers.

Answers should be:

a: 2mol*5/2 R

b: 2 mol*7/2 R

c: 2 mol * 7/2 R

d: 2 mol*9/2 R

Solutions

Expert Solution


Related Solutions

A 2.00 mol sample of an ideal gas with a molar specific heat of CV =...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV = 5 2 R always starts at pressure 1.00 ✕ 105 Pa and temperature 350 K. For each of the following processes, determine the final pressure (Pf, in kPa), the final volume (Vf, in L), the final temperature (Tf, in K), the change in internal energy of the gas (ΔEint, in J), the energy added to the gas by heat (Q, in J), and the...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV =...
A 2.00 mol sample of an ideal gas with a molar specific heat of CV = (5/2)R always starts at pressure 2.00 ✕ 105 Pa and temperature 300 K. For each of the following processes, determine the final pressure (Pf, in kPa), the final volume (Vf, in L), the final temperature (Tf, in K), the change in internal energy of the gas (ΔEint, in J), the energy added to the gas by heat (Q, in J), and the work done...
An extremely small sample of an ideal diatomic gas (with a molar mass of 28 g/mol)...
An extremely small sample of an ideal diatomic gas (with a molar mass of 28 g/mol) has the following distribution of molecular speeds: 1 molecule moving at 100 m/s, 2 molecules at 200 m/s, 4 at 300 m/s, and 3 at 400 m/s. What is the rms speed of the distribution? What is the average kinetic energy of translational motion per molecule? What is the temperature of this sample?
A 0.535-mol sample of an ideal diatomic gas at 408 kPa and 279 K expands quasi-statically...
A 0.535-mol sample of an ideal diatomic gas at 408 kPa and 279 K expands quasi-statically until the pressure decreases to 159 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. (a) isothermal final temperature K volume of the gas L work done by the gas J heat absorbed J (b) adiabatic final temperature K volume of the gas L...
A 0.507-mol sample of an ideal diatomic gas at 393 kPa and 286 K expands quasi-statically...
A 0.507-mol sample of an ideal diatomic gas at 393 kPa and 286 K expands quasi-statically until the pressure decreases to 147 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is isothermal or adiabatic. 1.) a.) isothermal final temperature b.) volume of the gas c.) work done by the gas d.) heat absorbed 2.)    a.) adiabatic final temperature b.) volume of...
A 0.460-mol sample of an ideal diatomic gas at 404 kPa and 276 K expands quasi-statically...
A 0.460-mol sample of an ideal diatomic gas at 404 kPa and 276 K expands quasi-statically until the pressure decreases to 168 kPa. Find the final temperature and volume of the gas, the work done by the gas, and the heat absorbed by the gas if the expansion is the following. (a) isothermal final temperature__________J volume of the gas_______L work done by the gas_________J heat absorbed___________J (b) adiabatic final temperature__________K volume of the gas___________L work done by the gas_________J heat...
The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant...
The temperature of 2.00 mol of an ideal monatomic gas is raised 15.0 K at constant volume. What are (a) the work W done by the gas, (b) the energy transferred as heat Q , (c) the change ?Eint in the internal energy of the gas, and (d) the change ?K in the average kinetic energy per atom
An engine that operates by means of an ideal diatomic ideal gas in a piston with...
An engine that operates by means of an ideal diatomic ideal gas in a piston with 2.70 moles of gas. The gas starts at point A with 3x103 Pa of pressure and 2.5x10-2 m3. To get from B from A, it is expanded by an isobaric process to double the initial volume. From B to C it expands adiabatically until it reaches three times the volume in A. From C to D the pressure decreases without changing the volume and...
Consider a gas of diatomic molecules at temperature T, each with moment of inertia I. If...
Consider a gas of diatomic molecules at temperature T, each with moment of inertia I. If Eg is the ground-state energy and Eex is the energy of an excited state, then the Maxwell-Boltzmann distribution predicts that the ratio of the number of molecules in the two states is nex ng = e −(Eex−Eg)/kBT . (1) a) Suppose we consider the excited state to be the ℓth rotational energy level, and the ground state to be ℓ = 0. Show that...
11. Consider a Carnot cycle with 2.25 moles of a diatomic ideal gas as the working...
11. Consider a Carnot cycle with 2.25 moles of a diatomic ideal gas as the working substance (assume Cv = 2.5*R). The following are the steps of the cycle: Step I: reversible, isothermal expansion at 300.0 °C from 10.00 L to 16.00 L. Step II: reversible, a diabatic expansion until the temperature decreases to 50.0 °C. Step III: reversible, isothermal compression at 50.0 °C. Step IV: reversible, adiabatic compression back to the initial conditions. A. Calculate q, w, ΔU, ΔH,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT