Question

In: Other

Comprehensive thermochemical problem: Consider an electrochemical cell with the following half- cells: Pb2+(aq)(0.01 M)/Pb(s) and Sn2+(aq)(2M)/Sn(s)...

Comprehensive thermochemical problem: Consider an electrochemical cell with the following half- cells: Pb2+(aq)(0.01 M)/Pb(s) and Sn2+(aq)(2M)/Sn(s) at 25 °C.

a. Find the potential of the cell.

b.Determine the oxidizing agent and reducing agent.

c. Calculate the standard free energy change for the reaction.
d. Find the free energy change for the cell under the current conditions.
e. Determine the equilibrium concentrations of the solutions.
f. Use ΔH°f data to determine ΔH°rxn. ΔH°f (Sn2+ (aq)) = -8.8 kJ/mol ΔH°f (Pb2+ (aq)) = 1.6 kJ/mol

g. Calculate K at 50 °C.

h. Determine the equilibrium concentrations at 50 °C.
i. Calculate the standard change in molar entropy for the reaction from values you determined in the previous problems.

Solutions

Expert Solution


Related Solutions

1. A voltaic cell is constructed that is based on the following reaction: Sn2+(aq)+Pb(s)→Sn(s)+Pb2+(aq). a. If...
1. A voltaic cell is constructed that is based on the following reaction: Sn2+(aq)+Pb(s)→Sn(s)+Pb2+(aq). a. If the concentration of Sn2+ in the cathode compartment is 1.50 M and the cell generates an emf of 0.22 V , what is the concentration of Pb2+ in the anode compartment? b. If the anode compartment contains [SO2−4]= 1.50 M in equilibrium with PbSO4(s), what is the Kspof PbSO4? 2. A voltaic cell is constructed with two silver-silver chloride electrodes, each of which is...
A voltaic cell is constructed that is based on the following reaction: Sn2+(aq)+Pb(s)→Sn(s)+Pb2+(aq). 1. If the...
A voltaic cell is constructed that is based on the following reaction: Sn2+(aq)+Pb(s)→Sn(s)+Pb2+(aq). 1. If the concentration of Sn2+ in the cathode compartment is 1.50 M and the cell generates an emf of 0.25 V , what is the concentration of Pb2+ in the anode compartment? 2.If the anode compartment contains [SO2−4]= 1.00 M in equilibrium with PbSO4(s), what is the Ksp of PbSO4?
A voltaic cell is constructed that is based on the following reaction: Sn2+(aq)+Pb(s)→Sn(s)+Pb2+(aq). Part A If...
A voltaic cell is constructed that is based on the following reaction: Sn2+(aq)+Pb(s)→Sn(s)+Pb2+(aq). Part A If the concentration of Sn2+ in the cathode compartment is 1.50 M and the cell generates an emf of 0.18 V , what is the concentration of Pb2+ in the anode compartment? Part B If the anode compartment contains [SO2−4]= 1.40 M in equilibrium with PbSO4(s), what is the Ksp of PbSO4?
An electrochemical cell is based on the following two half-reactions: Ox: Pb(s)→Pb2+(aq,Pb(s)→Pb2+(aq, 0.15 MM )+2e−)+2e− Red:...
An electrochemical cell is based on the following two half-reactions: Ox: Pb(s)→Pb2+(aq,Pb(s)→Pb2+(aq, 0.15 MM )+2e−)+2e− Red: MnO−4(aq,MnO4−(aq, 1.80 MM )+4H+(aq,)+4H+(aq, 1.9 MM )+3e−→)+3e−→ MnO2(s)+2H2O(l) Compute the cell potential at 25 ∘C∘C.
An electrochemical cell is based on the following two half-reactions: Ox: Sn(s)→Sn2+(aq, 1.65 M )+2e− Red:...
An electrochemical cell is based on the following two half-reactions: Ox: Sn(s)→Sn2+(aq, 1.65 M )+2e− Red: ClO2(g, 0.165 atm )+e−→ClO−2(aq, 1.90 M ) Compute the cell potential at 25 ∘C.
QUESTION 5 An electrochemical cell is based on the following two half-reactions: Ox: Pb(s)→Pb2+(aq, 0.21 M...
QUESTION 5 An electrochemical cell is based on the following two half-reactions: Ox: Pb(s)→Pb2+(aq, 0.21 M )+2e− Red: MnO−4(aq, 1.80 M )+4H+(aq, 1.5 M )+3e−→ MnO2(s)+2H2O(l) Compute the cell potential at 25 ∘C.?
1. An electrochemical cell is based on the following two half-reactions: Ox: Pb(s)→Pb2+(aq, 0.18 M )+2e−...
1. An electrochemical cell is based on the following two half-reactions: Ox: Pb(s)→Pb2+(aq, 0.18 M )+2e− Red: MnO−4(aq, 1.50 M )+4H+(aq, 1.8 M )+3e−→ MnO2(s)+2H2O(l) Compute the cell potential at 25 ∘C. 2.A concentration cell consists of two Sn/Sn2+ half-cells. The cell has a potential of 0.16 V at 25 ∘C. What is the ratio of the Sn2+ concentrations in the two half-cells? Express your answer using two significant figures. 3.Metal plating is done by passing current through a metal...
An electrochemical cell is based on the following two half-reactions: Ox: Pb(s)→Pb2+(aq, 0.15 M )+2e− Red:MnO−4(aq,...
An electrochemical cell is based on the following two half-reactions: Ox: Pb(s)→Pb2+(aq, 0.15 M )+2e− Red:MnO−4(aq, 1.70 M )+4H+(aq, 1.5 M )+3e−→ MnO2(s)+2H2O(l) Compute the cell potential at 25 ∘C.
An electrochemical cell is based on the following two half-reactions: Ox: Pb(s)?Pb2+(aq, 0.21M )+2e? Red: MnO?4(aq,...
An electrochemical cell is based on the following two half-reactions: Ox: Pb(s)?Pb2+(aq, 0.21M )+2e? Red: MnO?4(aq, 1.25M )+4H+(aq, 2.5M )+3e?? MnO2(s)+2H2O(l). Compute the cell potential at 25 ?C.
1) Calculate ΔG∞ for the electrochemical cell Pb(s) | Pb2+(aq) || Fe3+(aq) | Fe2+(aq) | Pt(s)....
1) Calculate ΔG∞ for the electrochemical cell Pb(s) | Pb2+(aq) || Fe3+(aq) | Fe2+(aq) | Pt(s). A. –1.2 x 102 kJ/mol B. –1.7 x 102 kJ/mol C. 1.7 x 102 kJ/mol D. –8.7 x 101 kJ/mol E. –3.2 x 105 kJ/mol 2)Determine the equilibrium constant (Keq) at 25∞C for the reaction Cl2(g) + 2Br– (aq)    2Cl– (aq) + Br2(l). A. 1.5 x 10–10 B. 6.3 x 109 C. 1.3 x 1041 D. 8.1 x 104 E. 9.8
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT