Question

In: Statistics and Probability

Use a significance level of 0.05 to test the claim that the average life of cell...

Use a significance level of 0.05 to test the claim that the average life of cell phones equals 5 years. This is done after a study where the following statistical data are collected: n = 27, (x bar) ̅ = 4.6 years and s = 1.9 years.

a) Indicates Ho Ha,

b) draw the graph,

c) find the critical value,

d) find the t-statistic,

e) performs the hypothesis test to reject or fail to reject the null hypothesis.

f) Find the interval at 95% confidence

All work must appear to receive credit

Solutions

Expert Solution

The provided sample mean is 4.6 and the sample standard deviation is s = 1.9, and the sample size is n = 27

(1) Null and Alternative Hypotheses

The following null and alternative hypotheses need to be tested:

Ho: μ = 5

Ha: μ ≠ 5

This corresponds to a two-tailed test, for which a t-test for one mean, with unknown population standard deviation will be used.

(2) Rejection Region

Based on the information provided, the significance level is α=0.05, and the critical value for a two-tailed test is t_c = 2.056

(3) Test Statistics

The t-statistic is computed as follows:

(4) Decision about the null hypothesis

Since it is observed that |t| = 1.094 < t_c = 2.056, it is then concluded that the null hypothesis is not rejected.

Using the P-value approach: The p-value is p = 0.284, and since p = 0.284 > 0.05, it is concluded that the null hypothesis is not rejected.

(5) Conclusion

It is concluded that the null hypothesis Ho is not rejected. Therefore, there is not enough evidence to claim that the population mean μ is different than 5, at the 0.05 significance level.

The number of degrees of freedom are df = 27 - 1 = 26 , and the significance level is α=0.05.

Based on the provided information, the critical t-value for α=0.05 and df = 26 degrees of freedom is t_c = 2.056

The 95% confidence for the population mean μ is computed using the following expression

Therefore, based on the information provided, the 95 % confidence for the population mean μ is

CI = (3.848, 5.352)


Related Solutions

Use a significance level of 0.05 to test the claim that the average life of cell...
Use a significance level of 0.05 to test the claim that the average life of cell phones equals 5 years. This is done after a study where the following statistical data are collected: n = 27, (x bar) ̅ = 4.6 years and s = 1.9 years. a) Indicates Ho Ha, b) draw the graph, c) find the critical value, d) find the t-statistic, e) performs the hypothesis test to reject or fail to reject the null hypothesis. f) Find...
A 0.05 significance level is used for a hypothesis test of the claim that when parents...
A 0.05 significance level is used for a hypothesis test of the claim that when parents use a particular method of gender​ selection, the proportion of baby girls is less than 0.5. Assume that sample data consists of 78 girls in 169 ​births, so the sample statistic of six thirteenths results in a z score that is 1 standard deviation below 0. Complete parts​ (a) through​ (h) below. Identify the null hypothesis and the alternative hypothesis. What is the value...
A 0.05 significance level is used for a hypothesis test of the claim that when parents...
A 0.05 significance level is used for a hypothesis test of the claim that when parents use a particular method of gender selection, the proportion of baby girls is greater than 0.5. Assume that sample data consists of 45 girls in 81​ births, so the sample statistic of 5/9 (five ninths) results in a z score that is 1 standard deviation above 0. Complete parts​ (a) through​ (h) below. a. Identify the null hypothesis and the alternative hypothesis? b. What...
You wish to test the following claim (Ha) at a significance level of α = 0.05....
You wish to test the following claim (Ha) at a significance level of α = 0.05. Ho: μ = 58.9 Ha: μ < 58.9 You believe the population is normally distributed, but you do not know the standard deviation. You obtain a sample of size n = 34 with mean M = 54.2 and a standard deviation of SD = 8.3. 1. What is the test statistic for this sample? (Report answer accurate to THREE decimal places.) test statistic =...
Conduct a hypothesis test with a 5% level of significance on the claim that the average...
Conduct a hypothesis test with a 5% level of significance on the claim that the average annual salary for a registered nurse in the state of Washington in 2017 was $55,000. Plainly state your null and alternative hypothesis, what type of test you are using, and why. Data: 61000, 57700, 120100, 8500, 55200, 53000, 40700, 48800, 33800, 50100, 40900, 56300, 56100, 34600, 2100, 42600, 2400, 48600, 21300, 52600, 87900, 29700, 43300, 33200, 41500, 47600, 79100, 38300, 8500, 112000, 10100, 79100,...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05. For the...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05. For the context of this problem, μd=μ2−μ1μd=μ2-μ1 where the first data set represents a pre-test and the second data set represents a post-test.       Ho:μd=0Ho:μd=0       Ha:μd<0Ha:μd<0 You believe the population of difference scores is normally distributed, but you do not know the standard deviation. You obtain pre-test and post-test samples for n=15n=15 subjects. The average difference (post - pre) is ¯d=−1.5d¯=-1.5 with a standard deviation of the...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05. For the...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05. For the context of this problem, μd=μ2−μ1μd=μ2-μ1 where the first data set represents a pre-test and the second data set represents a post-test.       Ho:μd=0Ho:μd=0       Ha:μd>0Ha:μd>0 You believe the population of difference scores is normally distributed, but you do not know the standard deviation. You obtain the following sample of data: pre-test post-test 52 69 51.6 34.7 48.3 55.4 31.6 46.8 46.4 42.6 31.6 27.1 49.3 49.3...
Test the given claim using the α=0.05 significance level and assuming that the populations are normally...
Test the given claim using the α=0.05 significance level and assuming that the populations are normally distributed and that the population variances are equal. Claim: The treatment population and the placebo population have the same means. Treatment group: n=9, x¯=110, s=5.9. Placebo group: n=7, x¯=116,s=5.7. The test statistic is =___________ The positive critical value is =__________ The negative critical value is =________ Is there sufficient evidence to warrant the rejection of the claim that the treatment and placebo populations have...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05. For the...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05. For the context of this problem, one data set represents a pre-test and the other data set represents a post-test.      Ho:μd=0Ho:μd=0 Ha:μd≠0Ha:μd≠0 You believe the population of difference scores is normally distributed, but you do not know the standard deviation. You obtain pre-test and post-test samples for n=137n=137 subjects. The average difference (post - pre) is ¯d=2.2d¯=2.2 with a standard deviation of the differences of...
Assume that you plan to use a significance level of \alphaα = 0.05 to test the...
Assume that you plan to use a significance level of \alphaα = 0.05 to test the claim that p1 = p2, Use the given sample sizes and numbers of successes to find the pooled estimate p-bar. Round your answer to the nearest thousandth. n1 = 236 n2 = 307 x1 = 77 x2 = 66
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT