Question

In: Electrical Engineering

Question 5 a) Draw the circuit of a Three-phase bridge inverter using a Y-connected load and...

Question 5

a) Draw the circuit of a Three-phase bridge inverter using a Y-connected load and explain its operation using 180 degree conduction clearly showing the gating sequence and the corresponding output line voltages for each phase. (10)

b) For the Y-connected load determine the line to neutral voltages for the three modes of operations. Draw the equivalent circuits for each mode and then draw the phase voltage waveforms for the 180-degree conduction. (7)

Solutions

Expert Solution


Related Solutions

Three balanced three-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of...
Three balanced three-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of 420+300i Ω/ϕ ; load 2 is Δ-connected with an impedance of 2400-1780i Ω/ϕ ; and load 3 is 170.1+2201i kVA . The loads are fed from a distribution line with an impedance of 2+17i Ω/ϕ . The magnitude of the line-to-neutral voltage at the load end of the line is 23√3 kV. Part A: Calculate the total complex power at the sending end of...
Three balanced 3-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of...
Three balanced 3-phase loads are connected in parallel. Load 1 is Y-connected with an impedance of 400 + j300 ? per phase, load 2 is ?-connected with an impedance of 2400 – j1800 ? per phase, and load 3 is absorbing 172.8 + j2203.2 kVA. The loads are fed from a set of distribution lines with an impedance of 2 + j16 ? per line. The magnitude of the line-to-neutral voltage at the load end of the line is 24?3...
Re-submission of question. Consider the full-bridge Single-phase inverter with input voltage equal to 200V. This inverter...
Re-submission of question. Consider the full-bridge Single-phase inverter with input voltage equal to 200V. This inverter is controlled by Sinusoidal PWM technique with amplitude modulation index equal to 0.5 to generate a 3-level half-wave symmetry with frequency equal to 50Hz. (a) Draw its power circuit [solved by an expert] (b) Obtain its switching table [solved by an expert] (c) Calculate the width of each generated pulses at the output [solved by an expert] (d) Calculate the RMS value of output...
A balanced three-phase delta-connected load is connected to a balanced three-phase delta-connected source via a transmission...
A balanced three-phase delta-connected load is connected to a balanced three-phase delta-connected source via a transmission line. The line-line voltage for the source is 100∟0° V/phase and the impedance of load is (27 + j18) Ω/phase. The transmission line has an impedance of (1 + j4) Ω/line. a) Draw the complete schematic of the power system showing the location of wattmeters. (Two-Wattmeter system is considered for this problem). Phase “a” could be considered as a reference phase. b) What must...
An unbalanced three-phase wye-connected and grounded load is connected to a balanced three-phase four-wire source. The...
An unbalanced three-phase wye-connected and grounded load is connected to a balanced three-phase four-wire source. The load impedances are Za = 14+j3 Ω , Zb = 5-j24Ω and Zc =1+j14 Ω  and the phase a line voltage has an effective value of 18 Kv: use line-to-neutral voltage of phase A as a reference. Find the line and neutral current, also find the reactive power delivered to load and power factor.
b) The load connected to a three-phase supply comprises three similar coils connected in star. If...
b) The load connected to a three-phase supply comprises three similar coils connected in star. If the phase currents are 10A and the total active power and power factor absorb by the loads are 3kW and 0.8 lagging, respectively. Find: i. The magnitude of phase and line voltages ii. Total apparent power (1 mark) iii. The impedance of each coil. c) If the coil in Q3(b) are now connected in delta to the same three-phase supply, calculate the magnitude of...
Re-submission of question.                          Consider the full-bridge single-phase inverter with input voltage equal to 200
Re-submission of question.                          Consider the full-bridge single-phase inverter with input voltage equal to 200V. This inverter is controlled by sinusoidal PWM technique with amplitude modu-      lation index equal to 0.5 to generate a 3- level half-wave symmetry waveform with frequency equal to 50 Hz.                            e)Calculate the amplitude of fundamen-   tal frequency.                                                  f) Draw the waveforms of refrence and      carrier signals.                                                g) Obtain the waveform of output voltage.                                                          h)Design the trigger signals of switches.   Thanks for your help.
A three phase 10kW, 1700rpm, 60Hz, four poles, Y connected induction motor has a no-load speed...
A three phase 10kW, 1700rpm, 60Hz, four poles, Y connected induction motor has a no-load speed of 1750rpm. The rotational mechanical losses are constant and equal to 500W. The core losses are constant and equal to 300W. The copper losses in the stator equal to the copper losses in the rotor at full load. If the rotor resistance per phase is 0.25?, calculate the following: a.The frequency of the induced current in the rotor circuit at full load. b.The percentage...
A 280-V, 3Ø AC power system, Y-connected three-phase generator connected through a three-phase transmission line to...
A 280-V, 3Ø AC power system, Y-connected three-phase generator connected through a three-phase transmission line to a Y-connected load. The transmission line has an impedance of (0.02+j0.4) Ω/phase, and the load has an impedance of (4+j3) Ω per phase. Determine the;(a)line current (IL) at the load [2Marks] (b)line and phase voltage of the load[2 Marks](c)active power, reactive and apparent power [2 Marks](d) power factor and specify whether it is lagging or leading. [4 Marks]
In a three-phase circuit the balanced delta load of (36 +j54) ohms is fed by impedance...
In a three-phase circuit the balanced delta load of (36 +j54) ohms is fed by impedance conductors (5 +j70) ohms. If the generator voltage is 120 V angle 0° phase A, calculate a) the bc voltage on the load, b) the powers in the conductors, c) the bc voltage of the delta load and d) the power delta on the load.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT