In: Math
Problem 15. Give an example of a two mutually exclusive events.
Problem 16. Give an example of three events E, F, and G so that each pair of events is mutually exclusive
Problem 17. Consider a situation where #(all) = 100, #(E) = 32, #(F) = 52, and #(E ∩ F) = 13. 1. Find P(E | F). 2. Calculate #(E ∩ F) #(F) and explain why this matches the value in part 1. Problem 18. Suppose we have 30 shuffled cards numbered 1-30. What is the probability of drawing an even value given that the value is greater than 9?
Problem 19. Suppose we roll a 6-sided die two times. What is the probability of the sum of the values being greater than 7 given that the first roll was a 5?