Question

In: Other

Brine (specific gravity 1.20) is flowing through a standard 80-mm pipe at a maximum rate...

20.28. Brine (specific gravity 1.20) is flowing through a standard 80-mm pipe at a maximum rate of 0.9 m3/min. In order to me

Brine (specific gravity 1.20) is flowing through a standard 80-mm pipe at a maximum rate of 0.9 m3/min. In order to measure the rate of flow, a sharp-edged orifice, connected to a simple U-manometer is to be installed. The maximum reading of the manometer is to be 400 mm Hg. What size orifice should be installed? Repeat, assuming a venturi meter is used instead of an orifice.

Solutions

Expert Solution


Related Solutions

Consider a pipe (diameter of 50 mm) with air flowing through it. The inlet conditions are:...
Consider a pipe (diameter of 50 mm) with air flowing through it. The inlet conditions are: Mach 3; total pressure = 1000 kPa and 550 K. The friction coefficient (f) is 0.004. The exit Mach number decreases with the length of the pipe. Assume adiabatic, steady flow. Write a short Matlab code and plot the following, while the exit Mach number changes from 2.5 to 0.99 with increments of ?M=0.01. Find the length of the pipe that is going to...
A water is flowing through a circular varying diameter pipe. The water completely fills the pipe...
A water is flowing through a circular varying diameter pipe. The water completely fills the pipe at all its sections. 1- What is the water velocity of the water at the first section if you know that the diameter of the pipe at this section= 22 cm and the water is flowing at a rate of 2.5 m3/s? 2- What is the diameter of the pipe at the second section if you know that the water velocity at this section...
Water is flowing down through the pipe shown in the drawing. Point A is at the...
Water is flowing down through the pipe shown in the drawing. Point A is at the higher elevation, while B and C are at the same elevation. The cross-sectional areas are the same at A and B. Rank the pressures at the three points, largest first. C has a larger diameter than the other two.
An incompressible fluid is flowing through a vertical pipe with a constriction. The wide section is...
An incompressible fluid is flowing through a vertical pipe with a constriction. The wide section is 2.00 cm in diameter and is at the top of the pipe. The pressure of the fluid in the wide section at the top is 200 kPa. The velocity of the fluid in the wide section is 4.00 m/s. The narrow section is located 4.00 m below the wide section. What is the diameter of the narrow section for the pressure of the fluid...
Water flows through a cast iron pipe with a diameter of 30 mm. The pipe is...
Water flows through a cast iron pipe with a diameter of 30 mm. The pipe is inclined at an angle of 3 degrees from horizontal and is 40 m long. The water flows due to gravity only. What is the maximum volume flow rate of the water? You may ignore any minor loses.
A brine solution with a density of 1230 kg/m3 moves through a constricted pipe in steady,...
A brine solution with a density of 1230 kg/m3 moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 2.00 ✕ 104 Pa, and the pipe diameter is 7.00 cm. At another point y = 0.40 m higher, the pressure is P2 = 1.25 ✕ 104 Pa and the pipe diameter is 3.50 cm. (a) Find the speed of flow (in m/s) in the lower section. (b)...
An incompressible, Newtonian fluid is flowing through a vertical circular conduit (a pipe). The flow is...
An incompressible, Newtonian fluid is flowing through a vertical circular conduit (a pipe). The flow is laminar. What is the velocity at the inner wall of the pipe? How do you know? The pipe has diameter a. The velocity profile in the pipe is vz = b ­– c r2. Please express c in terms of a and b. (You are applying a boundary condition to solve this problem.) Where in the pipe is the velocity a maximum? Please express...
If a solution with 50% one fluid 50% another flowing through a pipe, with a given...
If a solution with 50% one fluid 50% another flowing through a pipe, with a given temperature, and internal diameter of pipe and pressure gradient per metre. How would you confirm the flow is laminar ? Calculate the volumetric flow rate ? And calculate the local velocity of liquid at a given perpendicular distance from the inner wall of the pipe ?
Brine (S.G. = 1.2) flows through a 200 gpm pump. The pump outlet is 6” pipe...
Brine (S.G. = 1.2) flows through a 200 gpm pump. The pump outlet is 6” pipe and is 4 feet above the 8” pipe inlet. The inlet vacuum is 6” Hg. Outlet pressure is 20 psig. What is the water horsepower (WHP) of the pump? What color should the pipes be painted that are connected to this pump?
How to calculate density of mixture flowing through pipe, with 50% volume of one fluid and...
How to calculate density of mixture flowing through pipe, with 50% volume of one fluid and 50% volume of another fluid? Then for the mixture if temperature, internal diameter and pressure gradient is given. 1.Calculate Reynolds number 2. Volumetric flow rate 3. Local velocity at a perpendicular distance of X from inner wall of pipe.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT