Question

In: Other

Brine (specific gravity 1.20) is flowing through a standard 80-mm pipe at a maximum rate...

20.28. Brine (specific gravity 1.20) is flowing through a standard 80-mm pipe at a maximum rate of 0.9 m3/min. In order to me

Brine (specific gravity 1.20) is flowing through a standard 80-mm pipe at a maximum rate of 0.9 m3/min. In order to measure the rate of flow, a sharp-edged orifice, connected to a simple U-manometer is to be installed. The maximum reading of the manometer is to be 400 mm Hg. What size orifice should be installed? Repeat, assuming a venturi meter is used instead of an orifice.

Solutions

Expert Solution


Related Solutions

Crude oil of specific gravity (0.75) is flowing through a pipe. The pipe has a diameter...
Crude oil of specific gravity (0.75) is flowing through a pipe. The pipe has a diameter of 100 mm and 50 mm at the sections 1 and 2 respectively. The velocity of crude oil at the section 1 is 550 cm/s. The   section 1 is 3000 mm and section 2 is 2000 mm above the datum. If the pressure at the section 1 is 0.2 N/mm2, find the intensity of pressure at section 2?
Consider a pipe (diameter of 50 mm) with air flowing through it. The inlet conditions are:...
Consider a pipe (diameter of 50 mm) with air flowing through it. The inlet conditions are: Mach 3; total pressure = 1000 kPa and 550 K. The friction coefficient (f) is 0.004. The exit Mach number decreases with the length of the pipe. Assume adiabatic, steady flow. Write a short Matlab code and plot the following, while the exit Mach number changes from 2.5 to 0.99 with increments of ?M=0.01. Find the length of the pipe that is going to...
A water is flowing through a circular varying diameter pipe. The water completely fills the pipe...
A water is flowing through a circular varying diameter pipe. The water completely fills the pipe at all its sections. 1- What is the water velocity of the water at the first section if you know that the diameter of the pipe at this section= 22 cm and the water is flowing at a rate of 2.5 m3/s? 2- What is the diameter of the pipe at the second section if you know that the water velocity at this section...
Water is flowing down through the pipe shown in the drawing. Point A is at the...
Water is flowing down through the pipe shown in the drawing. Point A is at the higher elevation, while B and C are at the same elevation. The cross-sectional areas are the same at A and B. Rank the pressures at the three points, largest first. C has a larger diameter than the other two.
An incompressible fluid is flowing through a vertical pipe with a constriction. The wide section is...
An incompressible fluid is flowing through a vertical pipe with a constriction. The wide section is 2.00 cm in diameter and is at the top of the pipe. The pressure of the fluid in the wide section at the top is 200 kPa. The velocity of the fluid in the wide section is 4.00 m/s. The narrow section is located 4.00 m below the wide section. What is the diameter of the narrow section for the pressure of the fluid...
Water flows through a cast iron pipe with a diameter of 30 mm. The pipe is...
Water flows through a cast iron pipe with a diameter of 30 mm. The pipe is inclined at an angle of 3 degrees from horizontal and is 40 m long. The water flows due to gravity only. What is the maximum volume flow rate of the water? You may ignore any minor loses.
A brine solution with a density of 1230 kg/m3 moves through a constricted pipe in steady,...
A brine solution with a density of 1230 kg/m3 moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 2.00 ✕ 104 Pa, and the pipe diameter is 7.00 cm. At another point y = 0.40 m higher, the pressure is P2 = 1.25 ✕ 104 Pa and the pipe diameter is 3.50 cm. (a) Find the speed of flow (in m/s) in the lower section. (b)...
An incompressible, Newtonian fluid is flowing through a vertical circular conduit (a pipe). The flow is...
An incompressible, Newtonian fluid is flowing through a vertical circular conduit (a pipe). The flow is laminar. What is the velocity at the inner wall of the pipe? How do you know? The pipe has diameter a. The velocity profile in the pipe is vz = b ­– c r2. Please express c in terms of a and b. (You are applying a boundary condition to solve this problem.) Where in the pipe is the velocity a maximum? Please express...
If a solution with 50% one fluid 50% another flowing through a pipe, with a given...
If a solution with 50% one fluid 50% another flowing through a pipe, with a given temperature, and internal diameter of pipe and pressure gradient per metre. How would you confirm the flow is laminar ? Calculate the volumetric flow rate ? And calculate the local velocity of liquid at a given perpendicular distance from the inner wall of the pipe ?
´The velocity of oil flowing thru a 30 mm diameter pipe is equal to 2m/s. Oil...
´The velocity of oil flowing thru a 30 mm diameter pipe is equal to 2m/s. Oil has a kinematic viscosity of 5 x 10 -5 sq.m/s. If the pipe has a length of 120 m, compute the Reynolds Number, friction factor, and head loss in the pipe.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT