Question

In: Physics

Water is flowing down through the pipe shown in the drawing. Point A is at the...

Water is flowing down through the pipe shown in the drawing. Point A is at the higher elevation, while B and C are at the same elevation. The cross-sectional areas are the same at A and B. Rank the pressures at the three points, largest first. C has a larger diameter than the other two.

Solutions

Expert Solution


Related Solutions

A water is flowing through a circular varying diameter pipe. The water completely fills the pipe...
A water is flowing through a circular varying diameter pipe. The water completely fills the pipe at all its sections. 1- What is the water velocity of the water at the first section if you know that the diameter of the pipe at this section= 22 cm and the water is flowing at a rate of 2.5 m3/s? 2- What is the diameter of the pipe at the second section if you know that the water velocity at this section...
Water is flowing in the pipe shown in the figure below, with the 7.70-cm diameter at...
Water is flowing in the pipe shown in the figure below, with the 7.70-cm diameter at point 1 tapering to 3.45 cm at point 2, located y = 11.5 cm below point 1. The water pressure at point 1 is 3.20 ✕ 104 Pa and decreases by 50% at point 2. Assume steady, ideal flow. What is the speed of the water at the following points? Point 1? Point 2?
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in...
Water moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is 1.80 ✕ 105 Pa and the pipe radius is 2.90 cm. At the higher point located at y = 2.50 m, the pressure is 1.30 ✕ 105 Pa and the pipe radius is 1.60 cm. 1. find the speed flow for lower section 2. find the speed of flow in the upper section 3. find the volume flow...
Crude oil of specific gravity (0.75) is flowing through a pipe. The pipe has a diameter...
Crude oil of specific gravity (0.75) is flowing through a pipe. The pipe has a diameter of 100 mm and 50 mm at the sections 1 and 2 respectively. The velocity of crude oil at the section 1 is 550 cm/s. The   section 1 is 3000 mm and section 2 is 2000 mm above the datum. If the pressure at the section 1 is 0.2 N/mm2, find the intensity of pressure at section 2?
a) Water (Densitywater = 1,000 kg/m3) flows through a pipe that narrows. At point A it...
a) Water (Densitywater = 1,000 kg/m3) flows through a pipe that narrows. At point A it is determined that the water flows with a velocity of VA = 93 m/s. At point B it is determined that the water flows with a velocity of VB = 193 m/s.What is the nagnitude of the difference in pressure between points A and B. b) Two trains pass each other. Train A is traveling 36 m/s east. Train B is traveling 23 m/s...
An incompressible fluid is flowing through a vertical pipe with a constriction. The wide section is...
An incompressible fluid is flowing through a vertical pipe with a constriction. The wide section is 2.00 cm in diameter and is at the top of the pipe. The pressure of the fluid in the wide section at the top is 200 kPa. The velocity of the fluid in the wide section is 4.00 m/s. The narrow section is located 4.00 m below the wide section. What is the diameter of the narrow section for the pressure of the fluid...
An incompressible, Newtonian fluid is flowing through a vertical circular conduit (a pipe). The flow is...
An incompressible, Newtonian fluid is flowing through a vertical circular conduit (a pipe). The flow is laminar. What is the velocity at the inner wall of the pipe? How do you know? The pipe has diameter a. The velocity profile in the pipe is vz = b ­– c r2. Please express c in terms of a and b. (You are applying a boundary condition to solve this problem.) Where in the pipe is the velocity a maximum? Please express...
If a solution with 50% one fluid 50% another flowing through a pipe, with a given...
If a solution with 50% one fluid 50% another flowing through a pipe, with a given temperature, and internal diameter of pipe and pressure gradient per metre. How would you confirm the flow is laminar ? Calculate the volumetric flow rate ? And calculate the local velocity of liquid at a given perpendicular distance from the inner wall of the pipe ?
Consider a pipe (diameter of 50 mm) with air flowing through it. The inlet conditions are:...
Consider a pipe (diameter of 50 mm) with air flowing through it. The inlet conditions are: Mach 3; total pressure = 1000 kPa and 550 K. The friction coefficient (f) is 0.004. The exit Mach number decreases with the length of the pipe. Assume adiabatic, steady flow. Write a short Matlab code and plot the following, while the exit Mach number changes from 2.5 to 0.99 with increments of ?M=0.01. Find the length of the pipe that is going to...
How to calculate density of mixture flowing through pipe, with 50% volume of one fluid and...
How to calculate density of mixture flowing through pipe, with 50% volume of one fluid and 50% volume of another fluid? Then for the mixture if temperature, internal diameter and pressure gradient is given. 1.Calculate Reynolds number 2. Volumetric flow rate 3. Local velocity at a perpendicular distance of X from inner wall of pipe.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT