Question

In: Physics

What is the weight of the body?

A spring balance has a scale that reads from 0 to 50 kg. The length of the scale is 20 cm. A body suspended from this balance, when displaced and released, oscillates with a period of 0.6 s. What is the weight of the body?

Solutions

Expert Solution

Given

Maximum mass that the scale can read, M = 50 kg

Maximum displacement of the spring = Length of the scale, l = 20 cm

= 0.2 m

Time period, T = 0.6 s

Maximum force exerted on the spring, F = mg

Where,

g = acceleration due to gravity = 9.8 m/s2

F = 50 x 9.8 = 490

Hence,

Spring constant, k = F / l

= 490 / 0.2

We get,

= 2450 N m-1

Mass m is suspended from the balance.

Time period, t = 2π√m / k

Therefore,

m = (T / 2π)2 x k

= {0.6 / (2 x 3.14)}2 x 2450

We get,

= 22.36 kg

Hence, weight of the body = mg = 22.36 x 9.8

On calculation, we get,

= 219.13 N

Therefore, the weight of the body is about 219 N


The weight of the body is about 219 N.

Related Solutions

What is the ratio of the crown's apparent weight (in water) Wapparent to its actual weight Wactual
Take the density of the crown to be \(\rho_{\mathrm{c}} .\) What is the ratio of the crown's apparent weight (in water) \(W_{\text {apparent }}\) to its actual weight \(W_{\text {actual }} ?\) Express your answer in terms of the density of the crown \(\rho_{\mathrm{c}}\) and the density of water \(\rho_{\mathrm{w}}\) \(\frac{W_{\text {apparent }}}{W_{\text {actual }}}=1-\frac{\rho_{w}}{\rho_{c}}\)
What is the value of escape velocity for a body to escape from.earth gravitational field
Explain escape velocity details. What is the value of escape velocity for a body to escape from earth gravitational field 
Archimedes measured the weight of the crown in air to be 11.8 N and its weight in water to be 10.9 N. Was it pure gold?
It is said that Archimedes discovered the buoyancy laws when asked by King Hiero of Syracuse to determine whether his new crown was pure gold (SG = 19.3). Archimedes measured the weight of the crown in air to be 11.8 N and its weight in water to be 10.9 N. Was it pure gold?
To calculate Energy Radiated by body
A hot black body emits the energy at the rate of 16 J m-2 s-1 and its most intense radiation corresponds to 20,000 Å. When the temperature of this body is further increased and its most intense radiation corresponds to 10,000 Å, then find the value of energy radiated    
Role of HCL and Liver in our body
Hydrochloric acid in the stomach is secreted by the gastric glands present in its wall.   The liver is the largest and major digestive gland of humans
Role of HCL and Liver in our body
Hydrochloric acid in the stomach is secreted by the gastric glands present in its wall. The liver is the largest and major digestive gland of humans
Imagine that the apparent weight of the crown in water is W_apparent = 4.50 N
Imagine that the apparent weight of the crown in water is \(W_{\text {apparent }}=4.50 \mathrm{~N},\) and the actua weight is \(W_{\text {actual }}=5.00 \mathrm{~N}\). Is the crown made of pure \((100 \%)\) gold? The density of water is \(\rho_{\mathrm{w}}=1.00\) grams per cubic centimeter. The density of gold is \(\rho_{\mathrm{g}}=19.32\) grams per cubic centimeter. Yes No
Role of small and large intestine in our body
Explain the role of large and small intestine in human beings
A cylindrical beaker of height 0.100 m and negligible weight is filled to the brim with a fluid of density ρ = 890 kg/m3 . When the beaker is placed on a scale, its weight is measured to be 1.00 N
A cylindrical beaker of height 0.100 m and negligible weight is filled to the brim with a fluid of density ρ = 890 kg/m3 . When the beaker is placed on a scale, its weight is measured to be 1.00 N .(Figure 1) A ball of density ρb = 5000 kg/m3 and volume V = 60.0 cm3 is then submerged in the fluid so that some of the fluid spills over the side of the beaker. The ball is held...
Which dietary component does the body most commonly use for energy?
Which dietary component does the body most commonly use for energy? a) Proteins b) Carbohydrates c) Vitamins d) Fats