In: Math
Forecast the advertising revenue for each quarter in 2011 using seasonal dummy variables and a best subsets regression. (Let the first dummy variable be equal to 1 for Quarter 2 and so on, following the order of the seasonal categories in the given table.
2008
1 | 540 |
2 | 516 |
3 | 488 |
4 | 500 |
2009
quarter | Rev. in Millions |
1 | 433 |
2 | 407 |
3 | 402 |
4 | 460 |
2010
quarters | rev. in millions |
1 | 347 |
2 | 297 |
3 | 292 |
4 | 332 |
A) The revenue forecast for the first quarter in 2011 is?
The revenue forecast for the second quarter in 2011 is?
The revenue forecast for the third quarter in 2011 is?
The revenue forecast for the fourth quarter is?
B.) quarter 4 has an average revenue that is ___ above that for quarter !
C.) Calculate the MAD for the forecast.
Please See the Values Carefully......
The data can be presented in terms of Quarter and Year variables as:
Quarter1 | Quarter2 | Quarter3 | Quarter4 | Year | Revenue ($ millions) |
1 | 0 | 0 | 0 | 1 | 540 |
0 | 1 | 0 | 0 | 1 | 516 |
0 | 0 | 1 | 0 | 1 | 488 |
0 | 0 | 0 | 1 | 1 | 500 |
1 | 0 | 0 | 0 | 2 | 433 |
0 | 1 | 0 | 0 | 2 | 407 |
0 | 0 | 1 | 0 | 2 | 402 |
0 | 0 | 0 | 1 | 2 | 460 |
1 | 0 | 0 | 0 | 3 | 347 |
0 | 1 | 0 | 0 | 3 | 297 |
0 | 0 | 1 | 0 | 3 | 292 |
0 | 0 | 0 | 1 | 3 | 332 |
Carrying out regression in Excel (go to Data tab -> Data Analysis -> Regression, choose Revenue as Y-column, and Quarter/Year columns as X-columns), we get the following output:
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.986938585 | |||||
R Square | 0.97404777 | |||||
Adjusted R Square | 0.816360782 | |||||
Standard Error | 17.37540681 | |||||
Observations | 12 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 5 | 79318.33333 | 15863.66667 | 65.68158517 | 3.71424E-05 | |
Residual | 7 | 2113.333333 | 301.9047619 | |||
Total | 12 | 81431.66667 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 634 | 15.86150376 | 39.97098948 | 1.59828E-09 | 596.4935035 | 671.5064965 |
Quarter1 | 0 | 0 | 65535 | 0 | 0 | |
Quarter2 | -33.33333333 | 14.18696025 | -2.349575437 | -66.88016361 | 0.213496941 | |
Quarter3 | -46 | 14.18696025 | -3.242414102 | 0.014205528 | -79.54683027 | -12.45316973 |
Quarter4 | -9.333333333 | 14.18696025 | -0.657881122 | 0.531645555 | -42.88016361 | 24.21349694 |
Year | -97 | 6.143133992 | -15.78998605 | 9.90104E-07 | -111.5262036 | -82.47379638 |
Hence, the regression model obtained is:
Revenue = 634 - 33.33 * Quarter2 - 46 * Quarter3 - 9.33 * Quarter4 - 97 * Year
Now, 2011 is Year 4. Hence,
the revenue forecast for the first quarter in 2011 is = 634 - 33.33 * 0 - 46 * 0 - 9.33 * 0 - 97 * 4 = 246 mil $
the revenue forecast for the second quarter in 2011 is = 634 - 33.33 * 1 - 46 * 0 - 9.33 * 0 - 97 * 4 = 212.67 mil $
the revenue forecast for the third quarter in 2011 is = 634 - 33.33 * 0 - 46 * 1 - 9.33 * 0 - 97 * 4 = 200 mil $
the revenue forecast for the fourth quarter in 2011 is = 634 - 33.33 * 0- 46 * 0 - 9.33 * 1 - 97 *4 = 236.67 mi; $
Part b) Avg revenue for Quarter 1 = 391.5 mil $
Avg revenue for Quarter 4 = 382.17
Hence,
quarter four has an average revenue that is 391.5 - 382.17 = 9.33 mil $ above that for quarter 1
Part c) Using the above regression model, the data along with Predicted values and absolute deviations of predictions from the actual revenues are shown below:
Quarter1 | Quarter2 | Quarter3 | Quarter4 | Year | Revenue ($ millions) | Prediction ($ mil) | Abs Deviation ($ mil) |
1 | 0 | 0 | 0 | 1 | 540 | 537.00 | 3.00 |
0 | 1 | 0 | 0 | 1 | 516 | 503.67 | 12.33 |
0 | 0 | 1 | 0 | 1 | 488 | 491.00 | 3.00 |
0 | 0 | 0 | 1 | 1 | 500 | 527.67 | 27.67 |
1 | 0 | 0 | 0 | 2 | 433 | 440.00 | 7.00 |
0 | 1 | 0 | 0 | 2 | 407 | 406.67 | 0.33 |
0 | 0 | 1 | 0 | 2 | 402 | 394.00 | 8.00 |
0 | 0 | 0 | 1 | 2 | 460 | 430.67 | 29.33 |
1 | 0 | 0 | 0 | 3 | 347 | 343.00 | 4.00 |
0 | 1 | 0 | 0 | 3 | 297 | 309.67 | 12.67 |
0 | 0 | 1 | 0 | 3 | 292 | 297.00 | 5.00 |
0 | 0 | 0 | 1 | 3 | 332 | 333.67 | 1.67 |
Hence, MAD = Mean Absolute Deviation = 9.5 mil $