Question

In: Other

Consider a rigid, thick-walled tube that is filled with H2O liquid and vapor at 0.1 MPa....

Consider a rigid, thick-walled tube that is filled with H2O liquid and vapor at 0.1 MPa. After it is sealed, it is heated so that it passes through its critical point. What fraction of the mass in the tube is liquid?

Solutions

Expert Solution


Related Solutions

Q.8. Super-heated steam at 875 K is flowing through a thick walled tube of stainless tube...
Q.8. Super-heated steam at 875 K is flowing through a thick walled tube of stainless tube with inside diameter 40mm and outside diameter50mm such that its inner wall is heated to a uniform temperature of 875K.To reduce heat loss, the tube is lagged with 30mm layer of asbestos insulation k=0.2 W/m.K. Calculate the heat loss using the electrical analogy per metre length if the outer surface temperature of the insulated tube is 350K.Thermal conductivity of steel=19 W/m.k.
Water at 0.15 MPa if the water is 0.25% between liquid and vapor what is the...
Water at 0.15 MPa if the water is 0.25% between liquid and vapor what is the specific volume, Energy, Enthalpy and Entropy?
Two kg of water exist initially as a vapor and liquid at 90°C in a rigid...
Two kg of water exist initially as a vapor and liquid at 90°C in a rigid container of volume 2.42 m3. (a)At what pressure is the system? (b)What is the quality of the system? (c)The temperature of the container is raised to 100°C. What is the quality of the system, and what is the pressure? What are ΔH and ΔU at this point relative to the initial state? (d)As the temperature is increased, at what temperature and pressure does the...
2. Use MATLAB (ode45) to solve the second-order Euler-Cauchy ODE given in the thick-walled tube elasticity...
2. Use MATLAB (ode45) to solve the second-order Euler-Cauchy ODE given in the thick-walled tube elasticity problem handout for the case: ?r(1) = 0.1, dur(1)/dr = −0.02 Have your MATLAB code print out the values for the constants you determined in the general solution; i.e. “C1 = ... , C2 = ...” make a comparison plot showing your exact solution and the numerical MATLAB result on the same axes.
A vertical glass tube of length L = 1.280000 m is half filled with a liquid...
A vertical glass tube of length L = 1.280000 m is half filled with a liquid at 20.000 000 degrees C. How much will the height of the liquid column change when the tube and liquid are heated to 30.000000 degrees C? Use coefficients alpha_glass = 1.000 000 x 10^-5/K and Beta_liquid = 4.000 000 x 10^-5/K
A rigid 10-L vessel initially contains a mixture of liquid water and vapor at 100C with...
A rigid 10-L vessel initially contains a mixture of liquid water and vapor at 100C with 12.3 percent quality. The mixture is then heated until its temperature is 180C. Calculate the heat transfer required for this process.
A rigid tank contains 3 kg of subcooled liquid H2O at 50°C. An electric element in...
A rigid tank contains 3 kg of subcooled liquid H2O at 50°C. An electric element in the tank is turned on until the temperature rises to 95°C, where the H2O is now a saturated liquid on the verge of vaporizing. The tank is not well insulated, thus 10 kJ of heat are lost through its walls. Which is the correct energy balance for this process? Using the appropriate energy balance, determine the amount of electrical work, We, done during this...
A closed, rigid tank contains a two-phase liquid–vapor mixture of Refrigerant 22 initially at -20°C with...
A closed, rigid tank contains a two-phase liquid–vapor mixture of Refrigerant 22 initially at -20°C with a quality of 47.50%. Energy transfer by heat into the tank occurs until the refrigerant is at a final pressure of 6 bar. a) Determine the final temperature, in °C. b) If the final state is in the superheated vapor region, at what temperature, in °C, does the tank contain only saturated vapor?
Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa.
 Consider steam in an ideal Rankine cycle. The saturated vapor enters the turbine at 8.0 MPa. Saturated liquid exits the condenser at P = 0.008 MPa. The net power output of the cycle is 100 MW. determine the thermal efficiency of the cycle
Consider the Rankine power cycle using vapor and liquid. a: Explain what kinds of problems the...
Consider the Rankine power cycle using vapor and liquid. a: Explain what kinds of problems the Carnot Vapor Cycle has. b: Draw a T-s diagram for the ideal Rankine cycle and label each process explicitly. c: There is a method to superheat steam to high temperature in order to improve the efficiency of the ideal Rankine cycle. Explain its advantages and disadvantages explicitly. d: Name the gas power cycle which uses the same four processes in its cycle and draw...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT