Question

In: Mechanical Engineering

Water at 0.15 MPa if the water is 0.25% between liquid and vapor what is the...

Water at 0.15 MPa if the water is 0.25% between liquid and vapor what is the specific volume, Energy, Enthalpy and Entropy?

Solutions

Expert Solution

NOTE: I am assuming you meant, .

In case you mean, , it will be equal to;

which is approximately equal to 0.

Comment below in case of any doubt.

___________________________________________________________


Related Solutions

Water changes between solid phase (as ice) and liquid phase at 0℃. and between liquid phase and gas phase (as water vapor) at 100 ℃.
  Water changes between solid phase (as ice) and liquid phase at 0℃. and between liquid phase and gas phase (as water vapor) at 100 ℃. Write a program to accept a temperature front keyboard, and display the corresponding water phase (solid, liquid or gas) under that temperature.
Consider a rigid, thick-walled tube that is filled with H2O liquid and vapor at 0.1 MPa....
Consider a rigid, thick-walled tube that is filled with H2O liquid and vapor at 0.1 MPa. After it is sealed, it is heated so that it passes through its critical point. What fraction of the mass in the tube is liquid?
A sample of water in the vapor phase (no liquid present) in a flask of constant...
A sample of water in the vapor phase (no liquid present) in a flask of constant volume exerts a pressure of 403 mmHg at 99°C. The flask is slowly cooled. i) Assuming no condensation, use the Ideal Gas Law to calculate the pressure of the vapor at 91°C; at 75°C. ii) Will condensation occur at 91°C? 75°C? iii) On the basis of your answers in i) and ii), predict the pressure exerted by the water vapor in the flask at...
120 kilograms of saturated water at 2.32 MPa pressure is heated to saturated vapor at same...
120 kilograms of saturated water at 2.32 MPa pressure is heated to saturated vapor at same pressure. Determine heat required for the process.
18. Explain why the vapor pressure of water in equilibrium with liquid water is temperature dependent?
18. Explain why the vapor pressure of water in equilibrium with liquid water is temperature dependent?
A mass of 5 kg of saturated liquid vapor mixture of water is contained in a...
A mass of 5 kg of saturated liquid vapor mixture of water is contained in a piston cylinder device at 100 kPa, initially 2 kg of water is in the liquid phase and the rest is in the vapor phase.Heat is now transferred to the water and the piston which is resting on a set of stops, starts moving when the pressure in side reaches 200 kPa, heat transfer continues until the total volume increases by 20%, determine a. the...
Saturated liquid water at 1 MPa enters a D = 5 cm pipe at a rate...
Saturated liquid water at 1 MPa enters a D = 5 cm pipe at a rate of m(dot) = 2 kg/s. Heat is transferred to the water at a rate of Q(dot) = 5000 kW. The exit is at 1 MPa pressure. (a) Neglecting kinetic energy, calculate the temperature at the pipe exit. (ans = 400◦C) (b) Using your answer in a), calculate the exit velocity of the water. (ans = 312 m/s) (c) Based upon your answer, should kinetic...
Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to...
Water vapor at 5 MPa, 320°C enters a turbine operating at steady state and expands to 0.1 bar. The mass flow rate is 2.52 kg/s, and the isentropic turbine efficiency is 92%. Stray heat transfer and kinetic and potential energy effects are negligible. Determine the power developed by the turbine, in kW.
Pure liquid water has a heat of vaporization of ­x kJ/mol. The vapor pressure of water...
Pure liquid water has a heat of vaporization of ­x kJ/mol. The vapor pressure of water is 23.756 torr at room temperature (25 °C). What would the vapor pressure of water be expected to be at 37 °C? How would the vapor pressure be changed if 1.0 gram of NaCl were added to a volume of 100 mL of water?
Give an example of a vapor-liquid phase diagram and explain the difference in liquid and vapor...
Give an example of a vapor-liquid phase diagram and explain the difference in liquid and vapor composition at a given temperature during the distillation process.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT