Question

In: Chemistry

3. Assume that a particle is confined to a box of length L, and that the...

3. Assume that a particle is confined to a box of length L, and that the system wave function is

ψ(x)=sqrt(2/L)*sin[(π*x)/(L)]
(1) Is this state an eigenfunction of the momentum operator? Show your work.
(2) Calculate the average value of the momentum <p> that would be obtained for a large number of measurements. Explain your result.
(3) Calculate the probability that the particle is found between 0.31 L and 0.35 L.

Solutions

Expert Solution


Related Solutions

Consider a particle of mass m confined to a one-dimensional box of length L and in...
Consider a particle of mass m confined to a one-dimensional box of length L and in a state with normalized wavefunction. For a partide in a box the energy is given by En = n2h2/8mL2 and, because the potential energy is zero, all of this energy is kinetic. Use this observation and, without evaluating any integrals, explain why < px2>= n2h2/4L2
What are the most likely locations of a particle in a box of length L in...
What are the most likely locations of a particle in a box of length L in the state n = 2 and where are the nodes for this wavefunction? Express your ansers in terms (fractions) of the length L.
1. Consider a particle of mass m  in a box of length L with boundaries at x...
1. Consider a particle of mass m  in a box of length L with boundaries at x = 0 and x = L. At t = 0 the wavefunction is    where A is the normalization constant. (a) Determine the basis eigen states for a particle in the box. (b) Determine the normalization constant A. (c) Determine the probability of finding the particle in the ground state at t ≠ 0. (d) Show that the sum of probabilities of finding the...
Consider the particle-in-a-box problem in 1D. A particle with mass m is confined to move freely...
Consider the particle-in-a-box problem in 1D. A particle with mass m is confined to move freely between two hard walls situated at x = 0 and x = L. The potential energy function is given as (a) Describe the boundary conditions that must be satisfied by the wavefunctions ψ(x) (such as energy eigenfunctions). (b) Solve the Schr¨odinger’s equation and by using the boundary conditions of part (a) find all energy eigenfunctions, ψn(x), and the corresponding energies, En. (c) What are...
This is a Physical Chemistry Problem: For a particle in a cubic box of length a,...
This is a Physical Chemistry Problem: For a particle in a cubic box of length a, how many states have energy in the range of 0 to 16(h2/8ma2)?
A particle of mass m is confined to a finite potential energy well of width L....
A particle of mass m is confined to a finite potential energy well of width L. The equations describing the potential are U=U0 x<0 U=0 0 < x < L U=U0 x > L Take a solution to the time-independent Schrodinger equation of energy E (E < U0) to have the form A exp(-k1 x) + B exp(k1 x) x < 0 C cos(-k2 x) + D sin(k2 x) 0 < x < L F exp(-k3 x) + G exp(k3...
What is the expectation value of kinetic energy for a particle in a box of length...
What is the expectation value of kinetic energy for a particle in a box of length ( L/2 ) in the ground eigenstate (n=1)? What about for the third excited eignestate (n=3). Explain the difference.
The length l, width w, and height h of a box change with time. At a...
The length l, width w, and height h of a box change with time. At a certain instant the dimensions are l = 2 m and w = h = 3 m, and l and w are increasing at a rate of 7 m/s while h is decreasing at a rate of 5 m/s. At that instant find the rates at which the following quantities are changing. (a) The volume. m3/s (b) The surface area. m2/s (c) The length of...
Consider a particle of mass m that can move in a one-dimensional box of size L...
Consider a particle of mass m that can move in a one-dimensional box of size L with the edges of the box at x=0 and x = L. The potential is zero inside the box and infinite outside. You may need the following integrals: ∫ 0 1 d y sin ⁡ ( n π y ) 2 = 1 / 2 ,  for all integer  n ∫ 0 1 d y sin ⁡ ( n π y ) 2 y = 1...
What is the role of kinetic energy quantization in covalent bond formation? [keywords: particle-in-a-box, length, quantum...
What is the role of kinetic energy quantization in covalent bond formation? [keywords: particle-in-a-box, length, quantum state, energy, kinetic, hydrogen atom, hydrogen molecule, covalent bond energy...]
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT