Question

In: Advanced Math

The Cauchy-Schwarz Inequality Let u and v be vectors in R 2 . We wish to...

The Cauchy-Schwarz Inequality Let u and v be vectors in R 2 .

We wish to prove that ->    (u · v)^ 2 ≤ |u|^ 2 |v|^2 .

This inequality is called the Cauchy-Schwarz inequality and is one of the most important inequalities in linear algebra.

One way to do this to use the angle relation of the dot product (do it!). Another way is a bit longer, but can be considered an application of optimization. First, assume that the two vectors are unit in size and consider the constrained optimization problem:

Maximize u · v

Subject to |u| = 1 |v| = 1.

Note that |u| = 1 is equivalent to |u| 2 = u · u = 1.

(a) Let u = a b and v = c d . Rewrite the above maximization problem in terms of a, b, c, d.

(b) Use Lagrange multipliers to show that u · v is maximized provided u = v.

(c) Explain why the maximum value of u · v must, therefore, be 1.

(d) Find the minimum value of u · v and explain why for any unit vectors u and v we must have |u · v| ≤ 1.

(e) Let u and v be any vectors in R 2 (not necessarily unit). Apply your conclusion above to the vectors: u |u| and v |v| to show that (u · v) ^2 ≤ |u|^ 2 |v|^ 2 .

Solutions

Expert Solution


Related Solutions

Suppose u, and v are vectors in R m, such that ∥u∥ = 1, ∥v∥ =...
Suppose u, and v are vectors in R m, such that ∥u∥ = 1, ∥v∥ = 4, ∥u + v∥ = 5. Find the inner product 〈u, v〉. Suppose {a1, · · · ak} are orthonormal vectors in R m. Show that {a1, · · · ak} is a linearly independent set.
1. For this question, we define the following vectors: u = (1, 2), v = (−2,...
1. For this question, we define the following vectors: u = (1, 2), v = (−2, 3). (a) Sketch following vectors on the same set of axes. Make sure to label your axes with a scale. i. 2u ii. −v iii. u + 2v iv. A unit vector which is parallel to v (b) Let w be the vector satisfying u + v + w = 0 (0 is the zero vector). Draw a diagram showing the geometric relationship between...
show that for any two vectors u and v in an inner product space ||u+v||^2+||u-v||^2=2(||u||^2+||v||^2) give...
show that for any two vectors u and v in an inner product space ||u+v||^2+||u-v||^2=2(||u||^2+||v||^2) give a geometric interpretation of this result fot he vector space R^2
Let u and v be orthogonal vectors in R3 and let w = 3u + 6v....
Let u and v be orthogonal vectors in R3 and let w = 3u + 6v. Suppose that ||u|| = 5 and ||v|| = 4. Find the cosine of the angle between w and v.
2 Let u,v, and w be vectors, where u=(1,2,3,-1), v=(2,3,1,5) and w=(3,5,4,4). 2.1 Construct a basis...
2 Let u,v, and w be vectors, where u=(1,2,3,-1), v=(2,3,1,5) and w=(3,5,4,4). 2.1 Construct a basis for the vector space spanned by u, v and w. 2.2 Show that c=(1,3,2,1) is not in the vector space spanned by the above vectors u,v and w. 2.3 Show that d=(4,9,17,-11) is in the vector space spanned by the above vectors u,v and w, by expressing d as a linear combination of u,v and w.
Let u and v be vectors in R3. Consider the following statements.T or F (1) |u ...
Let u and v be vectors in R3. Consider the following statements.T or F (1) |u · v|  ≤  ||u|| + ||v|| (2) If  au + bv = cu + dv then  a  =  c  and  b  =  d. (3) ||u + v||2  =  ||u||2 + ||v||2 + 2(u · v) Let u, v, and w be vectors in R3. T or F. (1) u · v − ||u|| (2) (u · v) × w (3) || ( ||u|| projvu ...
All vectors are in R^ n. Prove the following statements. a) v·v=||v||2 b) If ||u||2 +...
All vectors are in R^ n. Prove the following statements. a) v·v=||v||2 b) If ||u||2 + ||v||2 = ||u + v||2, then u and v are orthogonal. c) (Schwarz inequality) |v · w| ≤ ||v||||w||.
Let u and v be two integers and let us assume u^2 + uv +v^2 is...
Let u and v be two integers and let us assume u^2 + uv +v^2 is divisible by 9. Show that then u and v are divisible by 3. (please do this by contrapositive).
Let vectors u and v form a basis in some plane, in each of the following...
Let vectors u and v form a basis in some plane, in each of the following cases determine if the vectors e1 and e2 for a basis in this plane: a)e1=u+v e2=u-v b)e1=-u+2v e2=3u-6v substantiate your decision
2) Let v, w, and x be vectors in Rn. a) If v is the zero...
2) Let v, w, and x be vectors in Rn. a) If v is the zero vector, what geometric object represents all linear combinations of v? b) Same question as a), except now for a nonzero v. c) Same question as a) except now for nonzero vectors v and w (be care- ful!). d) Same question as a) except now for nonzero vectors v, w, and x (be extra careful!).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT