Question

In: Advanced Math

Let u and v be two integers and let us assume u^2 + uv +v^2 is...

Let u and v be two integers and let us assume u^2 + uv +v^2 is divisible by 9. Show that then u and v are divisible by 3. (please do this by contrapositive).

Solutions

Expert Solution


Related Solutions

show that for any two vectors u and v in an inner product space ||u+v||^2+||u-v||^2=2(||u||^2+||v||^2) give...
show that for any two vectors u and v in an inner product space ||u+v||^2+||u-v||^2=2(||u||^2+||v||^2) give a geometric interpretation of this result fot he vector space R^2
Let A ∈ L(U, V ) and B ∈ L(V, W). Assume that V is finite-dimensional....
Let A ∈ L(U, V ) and B ∈ L(V, W). Assume that V is finite-dimensional. Let X be a 3 × 5 matrix and Y be a 5 × 2 matrix. What are the largest and smallest possible ranks of X, Y, and XY? Give examples of the matrix to support your answers
Let X ∈ L(U, V ) and Y ∈ L(V, W). You may assume that V...
Let X ∈ L(U, V ) and Y ∈ L(V, W). You may assume that V is finite-dimensional. 1)Prove that dim(range Y) ≤ min(dim V, dim W). Explain the corresponding result for matrices in terms of rank 2) If dim(range Y) = dim V, what can you conclude of Y? Give some explanation 3) If dim(range Y) = dim W, what can you conclude of Y? Give some explanation
Let U and V be vector spaces, and let L(V,U) be the set of all linear...
Let U and V be vector spaces, and let L(V,U) be the set of all linear transformations from V to U. Let T_1 and T_2 be in L(V,U),v be in V, and x a real number. Define vector addition in L(V,U) by (T_1+T_2)(v)=T_1(v)+T_2(v) , and define scalar multiplication of linear maps as (xT)(v)=xT(v). Show that under these operations, L(V,U) is a vector space.
Let U be a subspace of V . Prove that dim U ⊥ = dim V...
Let U be a subspace of V . Prove that dim U ⊥ = dim V −dim U.
Let V be a vector space and let U and W be subspaces of V ....
Let V be a vector space and let U and W be subspaces of V . Show that the sum U + W = {u + w : u ∈ U and w ∈ W} is a subspace of V .
Let Zt = U sin(2*pi*t) + V cos(2*pi*t), where U and V are independent random variables,...
Let Zt = U sin(2*pi*t) + V cos(2*pi*t), where U and V are independent random variables, each with mean 0 and variance 1. (a) Is Zt strictly stationary? (b) Is Zt weakly stationary?
True/False Question: If sppan{u,v}=W where u not equal to v. Then dim(W)=2. Answer: False Reasoning let...
True/False Question: If sppan{u,v}=W where u not equal to v. Then dim(W)=2. Answer: False Reasoning let u=1, v=2 then span(1,2}=R but dim(R)=1 not 2. I know the answer is false. please tell me whether my reasoning is correct.
Let V = R4 and let U = hu1, u2i, where u1 =   ...
Let V = R4 and let U = hu1, u2i, where u1 =    1 2 0 −3    , u2 =     1 −1 1 0    . 1. Determine dimU and dimV/U. 2. Let v1 =    1 0 0 −3    , v2 =     1 2 0 0    , v3 =     1 3...
The Cauchy-Schwarz Inequality Let u and v be vectors in R 2 . We wish to...
The Cauchy-Schwarz Inequality Let u and v be vectors in R 2 . We wish to prove that ->    (u · v)^ 2 ≤ |u|^ 2 |v|^2 . This inequality is called the Cauchy-Schwarz inequality and is one of the most important inequalities in linear algebra. One way to do this to use the angle relation of the dot product (do it!). Another way is a bit longer, but can be considered an application of optimization. First, assume that the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT