Question

In: Advanced Math

2 Let u,v, and w be vectors, where u=(1,2,3,-1), v=(2,3,1,5) and w=(3,5,4,4). 2.1 Construct a basis...

2
Let u,v, and w be vectors, where u=(1,2,3,-1), v=(2,3,1,5) and w=(3,5,4,4).

2.1
Construct a basis for the vector space spanned by u, v and w.

2.2
Show that c=(1,3,2,1) is not in the vector space spanned by the above vectors u,v and w.

2.3
Show that d=(4,9,17,-11) is in the vector space spanned by the above vectors u,v and w, by expressing d as a linear combination of u,v and w.

Solutions

Expert Solution


Related Solutions

Let u and v be orthogonal vectors in R3 and let w = 3u + 6v....
Let u and v be orthogonal vectors in R3 and let w = 3u + 6v. Suppose that ||u|| = 5 and ||v|| = 4. Find the cosine of the angle between w and v.
2) Let v, w, and x be vectors in Rn. a) If v is the zero...
2) Let v, w, and x be vectors in Rn. a) If v is the zero vector, what geometric object represents all linear combinations of v? b) Same question as a), except now for a nonzero v. c) Same question as a) except now for nonzero vectors v and w (be care- ful!). d) Same question as a) except now for nonzero vectors v, w, and x (be extra careful!).
Let vectors u and v form a basis in some plane, in each of the following...
Let vectors u and v form a basis in some plane, in each of the following cases determine if the vectors e1 and e2 for a basis in this plane: a)e1=u+v e2=u-v b)e1=-u+2v e2=3u-6v substantiate your decision
True/False Question: If sppan{u,v}=W where u not equal to v. Then dim(W)=2. Answer: False Reasoning let...
True/False Question: If sppan{u,v}=W where u not equal to v. Then dim(W)=2. Answer: False Reasoning let u=1, v=2 then span(1,2}=R but dim(R)=1 not 2. I know the answer is false. please tell me whether my reasoning is correct.
Let V be a vector space and let U and W be subspaces of V ....
Let V be a vector space and let U and W be subspaces of V . Show that the sum U + W = {u + w : u ∈ U and w ∈ W} is a subspace of V .
Let u and v be vectors in R3. Consider the following statements.T or F (1) |u ...
Let u and v be vectors in R3. Consider the following statements.T or F (1) |u · v|  ≤  ||u|| + ||v|| (2) If  au + bv = cu + dv then  a  =  c  and  b  =  d. (3) ||u + v||2  =  ||u||2 + ||v||2 + 2(u · v) Let u, v, and w be vectors in R3. T or F. (1) u · v − ||u|| (2) (u · v) × w (3) || ( ||u|| projvu ...
If V = U ⊕ U⟂ and V = W ⊕ W⟂, and if S1: U...
If V = U ⊕ U⟂ and V = W ⊕ W⟂, and if S1: U → W and S2: U⟂ → W⟂ are isometries, then the linear operator defined for u1 ∈ U and u2 ∈ U⟂ by the formula S(u1 + u2) = S1u1 + S2u2 is a well-defined linear isometry. Prove this.
Let W denote the set of English words. For u, v ∈ W, declare u ∼...
Let W denote the set of English words. For u, v ∈ W, declare u ∼ v provided that u, v have the same length and u, v have the same first letter and u, v have the same last letter. a) Prove that ∼ is an equivalence relation. b) List all elements of the equivalence class [a] c) List all elements of [ox] d) List all elements of [are] e) List all elements of [five]. Can you find more...
Suppose u, and v are vectors in R m, such that ∥u∥ = 1, ∥v∥ =...
Suppose u, and v are vectors in R m, such that ∥u∥ = 1, ∥v∥ = 4, ∥u + v∥ = 5. Find the inner product 〈u, v〉. Suppose {a1, · · · ak} are orthonormal vectors in R m. Show that {a1, · · · ak} is a linearly independent set.
The Cauchy-Schwarz Inequality Let u and v be vectors in R 2 . We wish to...
The Cauchy-Schwarz Inequality Let u and v be vectors in R 2 . We wish to prove that ->    (u · v)^ 2 ≤ |u|^ 2 |v|^2 . This inequality is called the Cauchy-Schwarz inequality and is one of the most important inequalities in linear algebra. One way to do this to use the angle relation of the dot product (do it!). Another way is a bit longer, but can be considered an application of optimization. First, assume that the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT