Question

In: Advanced Math

Let u and v be vectors in R3. Consider the following statements.T or F (1) |u ...

Let u and v be vectors in R3. Consider the following statements.T or F

(1) |u·v|  ≤  ||u|| + ||v||
(2) If  au + bv = cu + dv then  a  =  c  and  b  =  d.

(3) ||u + v||2  =  ||u||2 + ||v||2 + 2(u·v)

Let u, v, and w be vectors in R3. T or F.

(1) u·v − ||u||
(2) (u·v) × w
(3) || ( ||u|| projvu ) ||

Solutions

Expert Solution


Related Solutions

Let u and v be orthogonal vectors in R3 and let w = 3u + 6v....
Let u and v be orthogonal vectors in R3 and let w = 3u + 6v. Suppose that ||u|| = 5 and ||v|| = 4. Find the cosine of the angle between w and v.
Let vectors u and v form a basis in some plane, in each of the following...
Let vectors u and v form a basis in some plane, in each of the following cases determine if the vectors e1 and e2 for a basis in this plane: a)e1=u+v e2=u-v b)e1=-u+2v e2=3u-6v substantiate your decision
Suppose u, and v are vectors in R m, such that ∥u∥ = 1, ∥v∥ =...
Suppose u, and v are vectors in R m, such that ∥u∥ = 1, ∥v∥ = 4, ∥u + v∥ = 5. Find the inner product 〈u, v〉. Suppose {a1, · · · ak} are orthonormal vectors in R m. Show that {a1, · · · ak} is a linearly independent set.
2 Let u,v, and w be vectors, where u=(1,2,3,-1), v=(2,3,1,5) and w=(3,5,4,4). 2.1 Construct a basis...
2 Let u,v, and w be vectors, where u=(1,2,3,-1), v=(2,3,1,5) and w=(3,5,4,4). 2.1 Construct a basis for the vector space spanned by u, v and w. 2.2 Show that c=(1,3,2,1) is not in the vector space spanned by the above vectors u,v and w. 2.3 Show that d=(4,9,17,-11) is in the vector space spanned by the above vectors u,v and w, by expressing d as a linear combination of u,v and w.
For the following exercises, use the vectors shown to sketch u + v, u − v, and 2u.
For the following exercises, use the vectors shown to sketch u + v, u − v, and 2u.
For the following exercises, calculate u ⋅ v. Given the vectors shown in Figure 4, sketch u + v, u − v and 3v.
For the following exercises, calculate u ⋅ v.Given the vectors shown in Figure 4, sketch u + v, u − v and 3v.
Vector v=(9,0,2) is vector from R3 space. Consider standard inner product in R3. Let W be...
Vector v=(9,0,2) is vector from R3 space. Consider standard inner product in R3. Let W be a subspace in R3 span by u = (9,2,0) and w=(9/2,0,2). a) Does V belong to W? show explanation b) find orthonormal basis in W. Show work c) find projection of v onto W( he best approximation of v with elements of w) d) find the distance between projection and vector v
The Cauchy-Schwarz Inequality Let u and v be vectors in R 2 . We wish to...
The Cauchy-Schwarz Inequality Let u and v be vectors in R 2 . We wish to prove that ->    (u · v)^ 2 ≤ |u|^ 2 |v|^2 . This inequality is called the Cauchy-Schwarz inequality and is one of the most important inequalities in linear algebra. One way to do this to use the angle relation of the dot product (do it!). Another way is a bit longer, but can be considered an application of optimization. First, assume that the...
1. For this question, we define the following vectors: u = (1, 2), v = (−2,...
1. For this question, we define the following vectors: u = (1, 2), v = (−2, 3). (a) Sketch following vectors on the same set of axes. Make sure to label your axes with a scale. i. 2u ii. −v iii. u + 2v iv. A unit vector which is parallel to v (b) Let w be the vector satisfying u + v + w = 0 (0 is the zero vector). Draw a diagram showing the geometric relationship between...
1. Consider the three vectors, u and v are 10 degrees above and below the x-axis...
1. Consider the three vectors, u and v are 10 degrees above and below the x-axis respectively, and ||u|| = 1, ||v|| = 2, and ||w|| = 3. Arrange the dot products taken among these vectors from least to greatest 2. Let A be a 4 x 6 matrix. Find the elimination matrix E that corresponds with the row operation "switch rows 1 and 3, and scale row 4 by a factor of 6. 3. Find the formula for the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT