In: Math
All vectors are in R^ n. Prove the following statements.
a) v·v=||v||2
b) If ||u||2 + ||v||2 = ||u + v||2, then u and v are
orthogonal.
c) (Schwarz inequality) |v · w| ≤ ||v||||w||.
(a). Let v = (v1,v2,…vn). Then v.v = v12+v22+…+vn2 = ||v||2
(b) Let u= (u1,u2,…un) and v = (v1,v2,…vn). Then ||u||2 = u12+u22+…+un2 and ||v||2 = v12+v22+…+vn2. Further, u+v =(u1+v1,u2+v2,…,un+vn) so that ||u+v||2 =(u1+v1 )2+(u2+v2 )2+…+(un+vn )2 = (u12+v12+2 u1 v1)+ (u22+v22+2u2 v2)+…+ (un2+vn2+2un vn)= (u12+u22+…+un2)+( v12+v22+…+vn2)+2(u1 v1+ u2 v2+…+ un vn) = ||u||2+||v||2+2(u1 v1+ u2 v2+…+ un vn). Now, if ||u||2+||v||2 =||u + v||2, then2(u1 v1+ u2 v2+…+ un vn) = 0 or, 2u.v = 0 or u.v = 0 so that u and v are orthogonal.
c).We have ||v + w||2 = (v + w) · (v +wv) = v · v + w · w + 2v · w = ||v||2 + ||w|2 + 2v · w ≤||v||2 + ||w|2 + 2||v|| · ||w|| or, ||v + w||2 ≤ (||v|| + ||w||)2. Therefore, ||v + w|| ≤ (||v|| + ||w||).
Let v, w ∈ Rn. Then for all k ∈ R, we have (v − kw, v − kw) ≥ 0. Further, (v − kw, v − kw) = (v, v) − 2 (v, w)k + (w, w)k2.
Now, if we consider the quadratic function f(k) = (w,w)k2 − 2 (v, w)k + (v, v), then f(k) ≥ 0.
However, a quadratic function f(k) = ak2 + bk + c satisfying f(k) ≥ 0 has either two equal real roots or imaginary roots.
Hence b2 − 4ac = 4 (v, w)2 − 4 (v,v) (w, w) ≤ 0, so that (v, w)2 ≤ (v, v) (w,w). Now, on taking the square root of both the sides, we get |(v, w)| ≤ ||v|| ||w||.