In: Statistics and Probability
mpg | disp | hp | wt |
21 | 160 | 110 | 2.62 |
21 | 160 | 110 | 2.875 |
22.8 | 108 | 93 | 2.32 |
21.4 | 258 | 110 | 3.215 |
18.7 | 360 | 175 | 3.44 |
18.1 | 225 | 105 | 3.46 |
14.3 | 360 | 245 | 3.57 |
24.4 | 146.7 | 62 | 3.19 |
22.8 | 140.8 | 95 | 3.15 |
19.2 | 167.6 | 123 | 3.44 |
17.8 | 167.6 | 123 | 3.44 |
16.4 | 275.8 | 180 | 4.07 |
17.3 | 275.8 | 180 | 3.73 |
15.2 | 275.8 | 180 | 3.78 |
10.4 | 472 | 205 | 5.25 |
10.4 | 460 | 215 | 5.424 |
14.7 | 440 | 230 | 5.345 |
32.4 | 78.7 | 66 | 2.2 |
30.4 | 75.7 | 52 | 1.615 |
33.9 | 71.1 | 65 | 1.835 |
21.5 | 120.1 | 97 | 2.465 |
15.5 | 318 | 150 | 3.52 |
15.2 | 304 | 150 | 3.435 |
13.3 | 350 | 245 | 3.84 |
19.2 | 400 | 175 | 3.845 |
27.3 | 79 | 66 | 1.935 |
26 | 120.3 | 91 | 2.14 |
30.4 | 95.1 | 113 | 1.513 |
15.8 | 351 | 264 | 3.17 |
19.7 | 145 | 175 | 2.77 |
15 | 301 | 335 | 3.57 |
21.4 | 121 | 109 | 2.78 |
we will solve it by using excel and the steps are
Ener the Data into excel
Click on Data tab
Click on Data Analysis
select Regression
select input and output range
click on labels if your selecting data with labels
click on ok
The output from excel
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.9093 | |||||
R Square | 0.8268 | |||||
Adjusted R Square | 0.8083 | |||||
Standard Error | 2.6389 | |||||
Observations | 32.0000 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 3.0000 | 931.0565 | 310.3522 | 44.5655 | 0.0000 | |
Residual | 28.0000 | 194.9907 | 6.9640 | |||
Total | 31.0000 | 1126.0472 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 37.1055 | 2.1108 | 17.5788 | 0.0000 | 32.7817 | 41.4293 |
disp | -0.0009 | 0.0103 | -0.0905 | 0.9285 | -0.0221 | 0.0203 |
hp | -0.0312 | 0.0114 | -2.7245 | 0.0110 | -0.0546 | -0.0077 |
wt | -3.8009 | 1.0662 | -3.5649 | 0.0013 | -5.9849 | -1.6169 |
a) Fit a multiple regression model using MPG as the dependent variable and DISP, HP, and WT as the independent variables.
so using above output we can write the regression equation
mpg=37.1055-0.0009disp-0.0312hp-3.8009wt
b) Is the overall regression model significant? Test at the α = 0.05 level of significance. State the null hypothesis, the alternative hypothesis =, the test statistic calculated and critical values and your test conclusion.
The null hypothesis,
Ho:
That is overall regression model is not significant
the alternative hypothesis
H1: At least one
That is overall regression model is significant.
test statistic
F-statistic =44.5655
Significance F= 0.0000
SinceSignificance F= 0.0000 < α = 0.05 level of significance we reject the null hypothesis and conclude that the overall regression model significant.